基于深度学习的遥感影像语义分割算法研究

来源 :西安电子科技大学 | 被引量 : 0次 | 上传用户:wangqin613117
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
语义分割是一种像素级别的分类任务,其目的是为图像中所有的像素点分配一个相应的类别属性。遥感作为地球监测技术中的一个重要组成部分,其产生的影像具有超大的幅宽范围和丰富的图像内容,对其进行语义分割在城市规划、资源勘探、军事侦查等领域有着重要的意义。然而,由于遥感影像内容和光学成像条件的复杂性,空间分辨率达到亚米级别的遥感影像在语义分割上面临许多困难,通常难以获得对其细粒度的精确语义分割结果。本文基于深度学习的遥感影像语义分割算法展开研究,主要研究创新包括以下两个方面:(1)由于星载相机观测距离较远,高分辨率遥感影像中的一些目标通常占据较少的像素数,这类微小目标会被影像中像素占比较多的占主导地位的地物类别所包围,导致类别边界错综复杂,极易发生混淆。针对这一问题,本文提出了一种基于特征引导的遥感影像语义分割编解码网络。本文将编码阶段的特征分为地物轮廓相关的边缘特征和地物内部相关的主体特征两部分,显式地从较浅层提取出边缘特征,从较深层提取出主体特征。在解码器中,设计了一个特征引导模块通过跳跃连接的方式引导语义分割的输出,利用边缘特征增强地物边缘轮廓,利用主体特征增强地物的内部一致性,提升语义分割表现。另外,本文采用了多任务学习的策略,引入了边缘检测任务和辅助分割任务,利用不同任务之间的关联性提升最终语义分割任务的表现。(2)遥感影像中存在丰富的地物内容,这些地物在尺度、纹理、几何结构上都大不相同。本文提出了一种双重期望最大化注意力模块,以充分聚合多尺度上下文信息,适应遥感影像中大量尺度、形态等不一的目标。该模块利用自注意力机制,能够同时完成对空间和通道维度上的上下文信息的捕获,增强对不同尺度形态地物的表示。另外,本文通过引入期望最大化算法,得到一组低维的基,在一这组基上而非全局所有像素位置上计算注意力权重矩阵,使得算法的复杂度显著降低。本文所提出算法在两个大型遥感影像语义分割数据集Vaihingen和Potsdam上的实验,证实了本文算法的有效性和先进性。相比全局注意力机制,本文提出的双重期望最大化注意力模块的参数量减少了11%,浮点运算次数减少了41%。与现有的先进语义分割方法对比,本文所提出方法在两个数据集上都得到了最好的结果。在Potsdam数据集上整体像素精确度可以达到91.24%,平均交并比可以达到86.80%。
其他文献
遥感影像技术是上世纪60年代兴起的一门对地观测技术,它是依据电磁波理论运用多种传感器对远距离地面目标的电磁反射信息进行收集、处理并最后成像,从而对地物目标进行探测与识别的一种综合性技术。遥感影像技术在海洋资源监测,农作物产量估计以及灾害监测领域有着非常重要的实用价值,因而一直以来都是热门的研究方向。近年来随着高性能传感器的推陈出新以及遥感卫星从军用化迈入商业化的快速发展,大量高光谱、高分辨率、多时
学位
数字信号具有再生性强、有效性高、抗干扰能力强和便于加密等优点,所以在信息处理过程中,往往将所测的模拟信号映射到数字领域进行处理。模数转换器(ADC)作为混合信号处理过程中实现模数转换的必备器件,是现代电子系统的核心电路之一。随着集成电路技术的发展,数字领域的革新速度迅猛,ADC作为模拟系统和数字系统的接口,需要不断提高其功能和性能。在众多ADC架构中,逐次逼近型(SAR)ADC拥有高速高精度低功耗
学位
随着生物医学的迅速发展,各种形状和尺寸的身体中心植入物在临床医学上得到了广泛的应用,但是随着时间的推移,身体中心植入物可能会出现移位、损坏等各类问题,为了减少这些问题对人的健康造成威胁,我们需要对这类人群进行定期检测。身体植入物大多数是由金属及其合金制成的,在强磁场下金属会产生移位和发热等效应,许多传统的医学成像技术难以对其检测,故本文设计一套微波成像系统用于检测身体中心植入物。在微波成像中,首先
学位
随着数码相机、智能手机、平板、计算机等移动电子设备的日益普及,人类对传输高质量图像和视频的需求正在迅速增加。视频内容提供商保证最终用户的体验质量是一个关键问题。高质量的图像和视频数据对众多应用也至关重要,例如3D电视系统、监控系统、移动视频系统和会议系统。在视频数据到达最终用户之前,需要经过三个主要阶段:由捕获设备生成、使用编解码器进行压缩、通过通信信道传输。在这三个阶段过程中,视频都可能会产生各
学位
红外小目标检测是对红外图像中的小目标进行定位和分割的技术,其在精确制导、武器制造和监控预警等领域具有重要的应用价值。但由于成像距离远、成像环境复杂,且小目标的辐射强度受大气辐射和环境辐射的影响而被削弱,导致红外图像中的小目标具有尺寸小、信号弱、形状纹理特征不清晰等特点。因此,红外小目标检测是一个具有挑战性的研究课题。基于红外小目标的特点,本文将检测任务建模为更细粒度的分割任务,并选择UNet作为基
学位
在三维视觉领域中,点云是一种经典的表示方式。基于激光雷达等物理传感器采集到的点云数据存在着含噪声、低分辨率等问题,无法满足如自动驾驶、虚拟现实等计算机视觉的应用需求,因此对点云数据增强方法的研究有重要意义。即给定分辨率较低的点云作为输入,通过点云增强方法得到稠密、高分辨率的点云。传统方法多使用对称性假设、数据库先验模型匹配等算法完成该任务,存在对噪声较为敏感和通用性较差的问题。近年来,随着Poin
学位
近年来,随着深度学习技术在图像分类与识别等研究领域中的持续发展,不少应用了这些技术的人工智能产品已经投入使用。当前的研究结果显示,深度神经网络在执行许多任务时会表现出脆弱性,即在干净的样本中加入一些不易察觉的干扰可能使深度神经网络产生认知误差,从而导致深度学习模型的不稳定性。由此可见,深入研究对抗攻击算法,将成为深度学习领域的一个重要课题。本文受生成对抗网络GAN的启发,对基于GAN的图像分类对抗
学位
差分进化算法(DE)在求解优化问题时具有易于实现,不依赖于问题具体形式的优点,得到广泛应用。许多DE变体已经在进化计算大会(CEC)上取得了不错的成绩,表明了该类算法具有良好的性能。根据“No-Free-Lunch”(NFL)理论,单种优化算法并不能涵盖所有的优化问题,DE算法也具有该局限性,针对不同类型的优化问题,目前的DE改进算法依然不能取得很好的优化结果,因此仍需提出效果更好的改进算法去解决
学位
近些年来,随着载人航天技术和深空卫星技术以及移动通信技术的不断发展,人们对于动态时变环境下的通信系统的建立的需求日益迫切。现有的数字通信技术都需要接收机中精确的同步系统。对于高动态通信条件下,由于通信双方都处在高速的移动当中,导致在接收机内部会引起极大的多普勒效应和高阶变化率甚至是突然的信道衰落,严重影响了信号的可靠接收。这需要更加强劲高效的载波同步模块,能够在复杂动态环境下稳定工作。因此研究高动
学位
卫星编队飞行技术以其独特的优势成为21世纪空间技术发展的新趋势和航天领域的研究热点,此外,由于被动定位系统不需要主动发射信号,具有隐蔽性强等优点,受到国内外学者的广泛研究,因此,基于编队飞行卫星的被动定位具有良好的发展前景。在被动定位领域的研究中,基于到达时间差(Time Difference of Arrival,TDOA)/到达频率差(Frequency Difference of Arriv
学位