基于稳定同位素技术的典型湿地植物氮素利用策略研究

来源 :安徽大学 | 被引量 : 0次 | 上传用户:aiqiphilip
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
全球氮沉降日益严重,尤其氮沉降成分全球变化趋势表现出巨大的地区差异。升金湖作为季节性波动的自然湿地,其湿生植物物种可能通过获取不同形式的氮来应对氮沉降成分的变化并减少对相同氮源的竞争,尚不清楚邻体植物密度的变化是否会对其氮素吸收过程产生影响。另外,尽管丛枝菌根真菌(AMF)共生利于植物对氮素的利用,尚不明确不同水分条件和氮沉降格局下,AMF共生对湿地植物氮素利用策略的影响。为此,以升金湖的优势物种陌上菅(Carex thunbergii)和蓼子草(Polygonum cripolitanum)为主要研究对象,基于原位稳定同位素15N标记技术,比较分析了在不同竞争强度下(包括单种生长和不同比例混合生长)两种植物的氮素利用策略及其与根系功能性状之间的关系,了解它们的氮素形态偏好和竞争调控机制。同时,开展温室盆栽实验,比较分析AMF在不同形态氮素比例(铵态氮:硝态氮比为1:3、2:2和3:1)及土壤含水量(30%、50%和70%)条件下对陌上菅生长及氮素吸收速率的贡献。主要研究结果如下:(1)陌上菅和蓼子草对氮素的吸收主要受氮素形态的影响,且两种植物均能利用有机氮源。但无论竞争条件如何,两种植物均偏好吸收硝氮。(2)两种植物在与邻体植物的竞争中,其总氮吸收速率有降低的趋势,但降低的程度不同。当竞争对象在生长组合中占主导地位时,目标植物的总氮吸收速率降低。具体而言,对总无机氮(硝态氮和铵态氮)的吸收速率,随着竞争对象密度的增加,蓼子草的15N吸收速率呈下降趋势,而陌上菅15N吸收速率除蓼子草占主导地位时(陌上菅:蓼子草1:3)无明显变化。同样,陌上菅的存在降低了蓼子草的15N回收率。(3)竞争条件下,陌上菅的氮素获取策略相对稳定。而随着竞争对象密度的增加,蓼子草倾向于利用铵态氮和甘氨酸态氮,表现出较为灵活的氮素获取策略。(4)AMF共生能够促进陌上菅的生长。土壤水分低(30%)时,陌上菅会受到干旱胁迫,与AMF共生会增加陌上菅对干旱胁迫的耐受性;而土壤水分高(70%)时,AMF共生会增加陌上菅地下部分尤其是吸收根的生长来促进陌上菅对氮素的吸收。(5)铵态氮的增加会抑制陌上菅的生长,而与AMF共生能够减轻铵态氮对陌上菅生长的抑制作用;共生条件下通过增加陌上菅的比叶面积提高宿主的氮素吸收速率。(6)AMF共生状态对生物量分配和功能性状指标影响更为显著,从而调控植物氮获取,同时植物氮素获取策略也受土壤水分状况和氮组分调控。本研究阐明了陌上菅与蓼子草的竞争和共存机制以及AMF共生对陌上菅氮素利用的贡献,该研究结果对评估典型湿地植被对未来氮沉降变化的响应模式,以及湿地物种多样性保护具有参考价值。
其他文献
二氧化碳(CO2)的持续不合理排放,直接导致全球变暖,温室效应的主要原因之一。如何有效地降低CO2浓度,备受关注。电化学还原捕获CO2是减少排放的有效策略之一。醌类化合物(Q)中的羰基是具有强还原性,并且Q在非质子溶剂中经历两步单电子转移过程。Q苯环上取代基的不同,会影响到其氧化还原电位,以及捕获CO2的机理过程。本文考察了醌类衍生物在质子惰性溶剂中电还原捕获CO2的机理历程,研究了吸电子基团和给
环境中存在的重金属离子是生活中常见的有毒污染物之一,水资源、土壤资源及各类生物等一旦受到重金属离子的污染就会对自身产生很严重的影响,重金属离子的污染给生态环境平衡和人类自身发展造成很严重的危害。鉴于此,合理监测重金属离子的存在迫在眉睫。荧光探针由于其具有检测灵敏、干扰小及检测方便等优点而被广泛用于金属离子的检测。本论文以基于香豆素的席夫碱设计、合成及其应用为研究内容,成功制备出五种含不同取代基团的
悬浮颗粒物(Suspended Particulate Matter:SPM)是内陆水体的重要组成部分,是水生态和水环境评价的重要参数,在水生态系统中起着关键的地球化学作用。其运输和积累对水生态系统和人类活动具有直接和间接的影响,会直接导致河湖系统形态的改变,进而影响水体初级生产量、营养物质、氧饱和度的变化。因此,有效监测内陆水体悬浮颗粒物的时空变化规律,对掌握水体中悬浮物运移规律、制定水环境治理
湖泊是甲烷(CH4)释放的重要自然源。近年来,由于湖泊富营养化不断加剧,蓝藻水华频发。蓝藻聚积、衰亡可以改变水体理化性质,并向湖泊提供易降解有机质,驱动湖泊中CH4溶存与释放的变化,但其具体影响作用尚不清晰。本研究以我国典型富营养化浅水湖泊巢湖为研究对象,选取其西北湖湾区为研究重点。首先对该区域CH4溶存的时空分布特征与影响因子进行了观测与分析;然后采用漂浮通量箱和扩散释放模型等方法,对巢湖不同富
硫是重要的营养元素,其生物地球化学转化、循环对于维持水域生态系统的功能与健康发展有着重要作用,它与有机质矿化、水体酸化、生物成因黄铁矿的形成、微量金属元素循环等一系列重要的生态、环境过程紧密耦合;开展硫的生物地球化学转化、循环研究对于理解圈层营养盐耦合循环、源汇功能转换,元素全球循环的驱动机制等均具有重要的科学价值和意义。本课题组前期分析了南极阿德雷岛Y2湖沉积物(Y2)和菲尔德斯半岛燕鸥湖沉积物
湖泊不同位置岩芯沉积物相同代用指标的变化是否一致对于重建可靠的区域气候变化历史至关重要。目前多数研究仅利用深水区单一的岩芯沉积物来反演区域的气候环境变化,对于同一区域不同位置岩芯重建结果的异同尚缺乏研究。本文选择升金湖不同位置的两根钻孔岩芯沉积物为研究对象,同时在结合区域年代估算基础上,对比分析了各岩芯沉积物粒度、常量元素氧化物含量、微量元素含量等指标的空间变化情况,选用岩芯沉积物微量元素代用指标
环境中的重金属离子会对生物体造成严重影响,而这些重金属离子大多都是通过水体系统流入到环境中。因此,水体中的重金属离子被灵敏精准的测量至关重要。量子点材料由于易于合成、高荧光量子产率、灵敏度高和特异性强等优点被广泛应用于重金属离子的检测中。本论文设计、制备三种不同类型的量子点荧光传感器(荧光共振能量转移传感器、荧光直接淬灭传感器、比率荧光传感器)来对环境中的有害离子Hg2+离子和Cu2+离子进行检测
磷是生命不可或缺的营养元素,但当其超过一定水平则可能会成为引发湖泊富营养化和水华爆发的营养盐污染物。巢湖是我国三大富营养化湖泊之一,且是典型的磷限制型湖泊。营养盐污染物主要通过入湖河流输入湖泊,在传输的过程中部分营养盐会沉降并储存在河流沉积物中,河流沉积物成为了解湖泊营养盐来源的重要载体之一。河流沉积物中不同形态磷的生物可利用性有所不同,可用于指示环境条件的变化。沉积物中不同形态磷酸盐的氧同位素组
煤矿的持续开采造成地表变形,地表产生大量裂缝、沉陷等现象,最终形成大面积的采煤沉陷区,与此同时开采所产生的副产物会释放重金属进入土壤,会造成矿区土壤重金属的富集超过当地土壤本底值,产生重金属污染。临涣采煤沉陷区内环境复杂,区内既露天堆放大量煤矸石等工业固体废弃物又建有选煤厂、焦化厂、燃煤电厂等生产企业,都对周边土壤重金属含量与分布特征都会产生影响。本文以安徽淮北临涣采煤沉陷区为研究对象,采用数理统
沉积物是湖泊环境演化的重要信息载体,能够记录人类活动或自然因素导致的湖泊环境变化。磷是湖泊富营养化限制性营养元素之一,在外源输入得到有效控制后,磷-铁-硫耦合系统在控制湖泊沉积物内源磷的地球化学循环方面起着重要的作用。本研究以浅水富营养化湖泊巢湖为研究对象,在全湖布设9个定位样点,采集表层(S1~S9)和柱状(S3、S7)沉积物样品,分析了沉积物理化指标和磷铁硫元素的形态组成及分布,解析了巢湖沉积