论文部分内容阅读
光通信是一种基于光波载波的通信方式,自20世纪70年代以来,随着人们对通信的要求愈加强烈,光通信因其具有的传输容量大、中继距离长、保密性能好等优点获得了突飞猛进的发展,并成为了通信行业的重要支柱。在光通信网络中,存在着大量的平面光电子集成器件,如光调制器、光开关、复用/解复用器等,它们作为光网络的构成基础,正随着光网络的发展而快速发展。这些光电子器件在工作过程中会不可避免地产生损耗,如果不对此进行补偿,就会大幅降低信号的传输距离、增加误码率。光放大器是一种可以通过泵浦源激励对信号光进行放大的光学器件,能够实现对器件损耗的补偿功能,掺铒光波导放大器作为光放大器的一种,兼具体积小、增益高的特点,在集成光学中得到了广泛的应用。掺铒光波导放大器有着易于集成的特点,但是当插入独立的光放大单元时,其他功能器件的使用空间会不可避免的降低。如果可以让光学器件在实现基础功能的同时,还能够通过具有增益特性的波导材料对自身的损耗进行补偿,就可以在降低器件损耗的同时浪费芯片的使用空间。本论文提出采用具有光放大性能的掺杂聚合物作为集成波导器件的芯层制备Y分支功率分束器,在不占据多余空间的前提下,通过泵浦光的作用使器件具有补偿自身损耗的功能,是一种解决器件芯片空间使用效率和插入损耗这一矛盾的有效方法。论文设计并制备了基于NaYF4:Er3+,Yb3+纳米晶的倒脊形聚合物光波导放大器。采用高温热分解法制备了NaYF4:Er3+,Yb3+纳米晶,并对其吸收谱、发射谱、粒子形貌等方面进行了表征;根据表征得到的参数,利用Matlab、COMSOL等软件对器件的增益特性及光功率分布进行了模拟仿真;将纳米晶均匀分散在SU-8光刻胶中作为波导芯层材料,PMMA聚合物和SiO2分别作为器件的上下包层,采用半导体工艺制备了倒脊形结构的聚合物光波导放大器。测试结果显示,当1530 nm信号光功率为0.1 mW,980 nm泵浦光功率为267.7 mW时,器件获得的最大相对增益为3.5 dB。在光波导放大器的研究基础上,论文提出并实现了一种基于NaYF4:Er3+,Yb3+纳米晶的具有损耗补偿功能的聚合物Y分支功率分束器。根据材料性能,利用Rsoft、COMSOL等软件对器件结构参数进行了优化设计,并模拟仿真了器件中的光场传输。以纳米粒子掺杂的SU-8聚合物作为芯层材料,刻蚀SiO2作为下包层,PMMA聚合物作为上包层,通过光刻、刻蚀、旋涂等工艺制备了器件。经测试,器件两分支的插入损耗约15 dB,当输入1530 nm信号光功率为0.05 mW时,980 nm泵浦光功率267.7 mW下两分支波导分别获得了5.81 dB和5.41 dB的损耗补偿特性。论文最后针对光纤隔离器在集成光芯片上使用受到限制的问题设计并模拟了一种能够进行残余泵浦光解复用的集成波导结构。根据波导的定向耦合理论和光波导设计理论,优化设计出泵浦光解复用器的波导宽度、高度、间距等参数。模拟结果显示,该结构可以对980 nm泵浦光激发的1550 nm和540 nm两种放大器实现输出端泵浦光解复用功能。通过将该结构集成在波导放大器或损耗补偿器件的输出端,可以将输出波导中的泵浦光与信号光解复用,以避免残余泵浦光对器件性能测试的影响。