论文部分内容阅读
本文对金属陶瓷特别是Ti(C,N)基金属陶瓷的研究进展进行了综述,主要研究了粘结相中加入Hastelloy X合金粉(HXP)对材料组织和氧化性的影响,制备了成分为32%(Ni+HXP)-36.5%TiC-10%TiN-12.5%Mo-7.2%WC-1%Cr3C2-0.8%C的金属陶瓷,采用金相显微镜(OM)、X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)等手段、三点弯曲和高温氧化实验,探讨了Ti(C,N)基金属陶瓷微观组织及氧化膜的微观特性、力学性能和高温抗氧化性能。每种成分的Ti(C,N)基金属陶瓷的致密度和抗弯强度规律大体一致,都随烧结工艺的不同呈显出先增大后减小的趋势,且二者的最大值均在最佳烧结温度处,HXP含量为5﹪的材料致密度最大值接近98﹪,高于不添加HXP的材料致密度最大值,且前者的抗弯最大值接近于2000MPa,高于后者的最高抗弯1848 MPa,而其它成分材料两性能最大值均低于此值并随着HXP含量的增高依次降低;HXP含量的多少对Ti(C,N)基金属陶瓷材料的硬度影响并不大,一般在89.5-90.5HRA之间。添加HXP的Ti(C,N)基金属陶瓷中出现了Ni-Cr-Fe固溶体,且固溶体生成量及其成分随着HXP的添加量的增加略有不同。每种成分的Ti(C,N)基金属陶瓷基本上都能形成芯-环结构,而且大部分芯-环结构都具有过渡层rim相。含有0-16% HXP的材料组织结构属于正常的金属陶瓷组织,其中含有5% HXP和0% HXP的材料几乎所有的相为完整的芯-环结构,且rim相的厚度略小于0.5μm,前者的组织分布比后者均匀;HXP的含量为22%时,材料的部分组织结构不完整,且rim相的厚度很多都超过了0.5μm;HXP的量为32%时,材料表面有很多孔洞,致密度低,组织结构大部分都不完整且分布不均匀。Ti(C,N)基金属陶瓷材料氧化膜生长速度遵守抛物线定律。对氧化增重数据进行动力学方程模拟,当粘结相中HXP的含量为0%-10%时,氧化膜比较致密,高温抗氧化能力较好,其中HXP的含量为5%时材料氧化膜比不含HXP的材料氧化膜致密化程度好,加之前者比后者的烧结致密度大,所以前都比后者的高温抗氧化性好;当HXP的含量超过16%时,生成的氧化膜比较疏松,材料高温抗氧化能力低。Ti(C,N)基金属陶瓷的高温抗氧化性应是随着HXP的含量的增加而提高的,但HXP的含量高时,材料的致密度低,材料的高温抗氧化性低。综合分析知HXP的含量为5%左右时,Ti(C,N)基金属陶瓷材料高温抗氧化性最好。