【摘 要】
:
边界元法(BEM)是求解偏微分方程的一种有效的数值计算方法,边界元法将求解区域内的微分方程边值问题归化到边界上,然后在边界上离散求解。边界元法主要优点是降维,从而使问题所
论文部分内容阅读
边界元法(BEM)是求解偏微分方程的一种有效的数值计算方法,边界元法将求解区域内的微分方程边值问题归化到边界上,然后在边界上离散求解。边界元法主要优点是降维,从而使问题所需的方程少,数据少,求解工作大为简化,这在处理高维问题时具有优势。小波作为一个新兴的数学分支,应起始于S.Mallat和Y.Meyer在八十年代中后期所做的工作,即构造小波基的通用方法,此后小波得到了迅猛的发展。小波变换克服了传统Fourier变换的不足,是继Fourier分析之后的一个突破性进展。小波在时域和频域都具有良好的局部化特性,在应用领域更是掀起了一股应用小波的热潮,它具有丰富的理论,应用十分广泛,如信号处理、图像分析等,是工程应用中强有力的方法和工具,给许多相关领域带来了崭新的思想,并使其被越来越多的数学研究工作者所关注,由于小波兼有光滑性和局部紧支撑性质,能更好的处理积分和微分方程的数值求解问题。小波BEM自上世纪90年代提出以来,一直是国内外学者研究的热点。小波BEM具有迭代效率高、矩阵预条件简单等优点,因此成为众多学者关注的一种BEM快速求解方法。 本研究分为四个部分:第一章主要介绍了论文选题背景,小波与边界元研究的历史和现状,以及本文要做的工作。第二章介绍了小波分析的基本理论,包括小波和小波变换的定义、性质,多分辨分析、尺度函数的定义、性质以及周期拟小波的基本理论。第三章介绍了边界元基本理论,加权余量法、变分法概述,以及边界积分方程的推导过程。第四章是本文的主要工作,主要研究了利用拟周期小波边界元方法讨论二维拉普拉斯方程的数值求解问题。首先用边界元方法将待求方程化为边界积分方程,然后用拟周期小波作为基底,将积分方程在边界上展开,化为对应的代数方程组,求解系数,得到方程的近似解。在对方程组求解过程中,系数矩阵作小波矩阵变换,利用多尺度方法,求解新的代数方程组,减少计算量,并分析了此算法的收敛性、算法复杂度及误差分析。
其他文献
混沌是一种复杂的非线性、非平衡的动力学过程,其特点为:混沌系统的行为是许多有序行为的集合,而每个有序分量在正常条件下,都不起主导作用;混沌看起来似为随机,但都是确定的;混沌系
摩擦是一种复杂的非线性物理现象,产生于具有相对运动的接触面之间。在机械机电系统的摩擦模型的研究方面,以往的学者们比较注重系统的控制策略及其实现方法的研究,而对系统动力学方面的探讨尚不多见。具时滞反馈控制的Stribeck摩擦模型是一个非线性控制系统,反馈控制力是被控对象位移的线性函数,Stribeck摩擦力则为速度的非线性函数,当系统参数位于某些区域时,反馈控制力会使滑块产生相当大的振动,所以分析
随着现代交通的迅速发展,停车场资源越来越紧张。如何有效的管理停车场车位、提高停车场的使用效率,是智能交通系统面临的一个课题。与地感线圈和超声波探测技术相比,基于磁
人脸识别是生物特征识别中的一项重要技术,也是图像处理,机器学习等领域的热点研究课题,在公安系统,保险,银行,海关,身份证系统等领域具有广阔的应用前景。不同于传统的Eigen
随着复杂网络科学研究的迅速崛起,其上的疾病传播动力学研究也受到越来越多的关注.在以往的传染病传播研究中,人们往往采用经典的SIS、SIR模型,但在现实生活中,疾病爆发时个体通
在确定信息环境下,边权为固定值传统的交通网络最短路问题已经取得了大量的研究成果。然而在现实中,由于运输方式、天气、道路等随机因素的影响,交通网络的边权可能成为随机
关于非线性微分方程概周期型解的存在性问题,可以归结为寻求不动点的问题,而大部分文章运用的是指数二分性理论和压缩映射定理。在概周期函数集的列紧性理论建立后,对于非线性微
单调动力系统是由单调方法和动力系统理论相结合而产生的新系统,它是一类特殊的动力系统。起初,其中的合作、竞争系统主要被Hirsch所讨论[见文1-9和28]。文[1-4]主要探究合作系
本文建立了VaR度量下的OWA算子证券投资组合模型,模型通过最大化投资者的期望效用函数值,预期收益的约束条件是预期的最大损失应该落在投资者的VaR约束集中。主要研究在给定
微分包含是非线性分析理论的重要分支,它与微分方程、最优控制及最优化等其它数学分支有着紧密的联系。研究微分包含解的存在性和能控性是微分包含理论的基本内容。本文主要研