论文部分内容阅读
本文给出债务关系的模糊矩阵表示,通过模糊矩阵幂运算实现了间接债务关系的基本要素-债务链,债务圈,债务量的刻画。为三角债的分析研究和决策提供依据。 给出划转的数学公式,第一次把圈和链统一在一个模式之下,并通过矩阵的变换得以实现。这样,划转可以从任何债务链着手,从根本上简化了准备过程。进一步的讨论从理论上证明了它具有不改变单位债务量和可实现性优点且易于做成软件系统,实现电算化,成为解决三角债问题的工具。 划转的最后结果简单阵表示消除了三角债后的