论文部分内容阅读
据WHO官方网站公布的信息,恶性肿瘤目前在世界范围内是导致死亡的最主要的原因之一。2008年约有760万人死于恶性肿瘤,约占总死亡人数的13%;预计到2030年,世界范围内死于恶性肿瘤的人数将超过1100万人。调查显示,我国恶性肿瘤发病数正以年均3%~5%的速度递增。在城市,肺癌、胃癌和乳腺癌的发病率最高;在农村,胃癌、食管癌和肝癌是前三位的高发癌症。因此,针对抗肿瘤治疗方法的研究越来越引起了社会各界的广泛重视。寻找抗肿瘤治疗效果证据的最安全最有效的途径是临床试验。临床试验的主要目的是研究治疗的有效性与安全性。肿瘤临床试验作为临床试验的一个特殊分支,具有自己的特点:首先,结局指标往往是某结局事件发生的时间;其次,随访时间通常较长,病人在随访中更容易发生删失,因此最常用的分析方法是生存分析。由于肿瘤临床试验的特殊性,在肿瘤临床试验的设计和数据分析中,可能遇到各种各样的问题。到目前为止,仍然存在一些问题尚未解决。本论文的目的就是探索与研究在肿瘤临床试验中遇到的三个问题的解决方法。第一个问题,在一类探索新治疗有效性的研究中,研究者为在常规治疗下发生了进展(一般定义为肿瘤增大25%)的带瘤病人尝试新的治疗,为了在有限的成本下能够对新治疗的效果进行评价,研究者怎样利用这些病人在之前接受的常规治疗下的肿瘤进展时间或其相关函数作为对照,与新治疗下的肿瘤进展时间或其相关函数进行比较,来对新治疗的效果进行评价。在比例风险假定成立时,我们给出了相关生存数据在非劣性假设下,用非参数的加权秩检验进行分析的方法,对新治疗的效果进行评价。并且通过随机模拟的方法对检验的效果进行了评估,发现效果很好。该方法不仅限于以上情形,更可以应用于任何配对或相关生存数据的非劣性假设检验中。另外,我们在无删失和存在删失的条件下,分别给出了非劣性假设检验相关生存数据所需样本量的计算公式,并在计算出的样本量下通过随机模拟并计算实际的统计效能(power)。从结果中不难看出计算出的样本量完全能够满足power的要求。因此,我们给出的样本量公式可以为临床试验的设计提供参考。我们利用一个乳腺癌临床试验的例子说明了检验的方法及样本量计算公式的可行性。第二个问题,在临床试验得到的配对或相关生存数据中,如果不满足比例风险假定,我们对随访过程中任意时间点上的风险比可能更感兴趣。针对在比例风险假定不满足时,如何计算任意时间点上的风险比的问题,我们给出了不需要比例风险模型假定的非参数的核方法来估计任意时间点上的风险比的及其置信区间。目前为止,这种核方法仅被用于当两个治疗组的生存时间独立的情形之下。我们将非参数核方法用于估计边际风险率,并将近年来提出的MOVER方法用在构造两个相关的生存数据在随访过程中任意时间点的边际风险率之比的置信区间中。在构造单个边际风险率的置信区间时,我们分别采用了"delta"法与"transform"法。通过随机模拟,我们可以看出当样本量很大并且时间点不是很靠近边界时,两种方法的效果都很好。我们也将这两种方法运用于实际的临床试验数据中,用以说明其可行性。第三个问题,在平行对照的临床试验中,将病人随机分为两组,新治疗组与对照治疗组,在中期分析中,发现所试验的治疗比对照治疗好,使得原来设计的试验不得不终止,并允许对照治疗的病人选择开始接受新治疗。此时,由于随访时间较短,得到的仅是治疗的短期疗效指标的结果,为了观察新疗法的长期效果,因此继续对病人进行观察。我们希望能得到如果没有发生治疗转换,一直继续随访,最终如何评价两种治疗效果的差异。我们比较了利用反事实风险率构造的SCC法、利用逆概率删失加权的IPCW方法和简单ITT法、在ITT集上调整了与治疗转换和结局都有关的协变量的COX回归相比的效果。通过随机模拟,我们发现SCC法与IPCW法都能校正治疗转换效应,并且与ITT和COX相比更加能够反映两种治疗的真实差异。于是,虽然SFDA要求使用ITT法进行分析,但在遇到病人发生治疗转换时,SCC与IPCW法可依作为ITT法的补充。我们也将SCC法与IPCW法用于解决加拿大国家癌症研究所的临床试验组(NCIC CTG)负责的一个随机双盲安慰剂对照的肿瘤临床试验中遇到的问题。