论文部分内容阅读
化学镀以其工艺简便、操作方便和性能优异,被广泛应用于实际生产中。对于镀态镀层,其性能有一定的局限性,因此在镀态镀层的基础上,广泛采用炉内退火进行热处理提高其硬度、耐磨、耐蚀性能。然而对于激光热处理改变镀层性能研究相对较少,改变激光工艺参数对镀层热处理的研究就更少。因此本文采用化学沉积法制备Ni-4.63Mo-12.39P(wt%)合金沉积层,并采用两种激光工艺(线光斑无搭接扫描、圆光斑搭接扫描)对镀层进行热处理。采用 XRD、SEM、EDS等测试手段分析了镀层的成分、组织结构和表面形貌等微观特征;通过硬度测试研究了镀层在不同激光工艺下的硬度;通过EIS测试、表面粗糙度测试,研究了镀层的耐蚀性能;通过两者激光扫描工艺的对比,得出最优的提高镀层性能的激光工艺参数。 本研究主要内容包括:⑴Ni-4.63Mo-12.39P(wt%)合金镀层属于高磷镀层,为非晶结构。随着扫描速度降低,线、圆光斑镀层晶化程度不断提高,当线光斑扫描速度低于12 mm/s、圆光斑扫描速度低于10 mm/s时,Ni-Mo-P镀层发生Ni3P晶化反应,同时伴有Ni-Mo固溶体形成,但是直到描速度为6mm/s时,两种镀层均为达到完全晶化。相同扫描速度下,能量密度较大的线光斑扫描有利于Ni3P相的析出,其晶化程度和Ni3P质量分数较大;而在低速(6、8mm/s)扫描时,圆光斑搭接的扫描方式更有利于Ni3P相尺寸的长大。⑵随着扫描速度降低,线、圆光斑扫描镀层硬度均呈现出先增加后减小的变化趋势,并在8mm/s时,镀层硬度都达到最大值,其中线光斑镀层硬度较高为12.6GPa;圆光斑采用搭接的扫描方式其镀层硬度变化较小。相同扫描速度下,能量密度较大的线光斑在低速扫描(6、8mm/s)下其镀层硬度较高;而在10mm/s下,能量密度较大的线光斑镀层硬度较高。⑶Ni-Mo-P合金镀层在3.5wt%NaCl溶液中的电化学阻抗谱只由一个容抗弧组成,当线光斑扫描镀层在12mm/s下、圆光斑扫描镀层在8mm/s下,其容抗弧半径最大,耐蚀性能最好。在相同扫描速度的低速扫描(6、8mm/s)下,圆光斑采用搭接的扫描的方式有利于减小镀层表面粗糙度值,耐蚀性能较好;而在10mm/s下,能量密度较大的线光斑镀层粗糙度值较小,耐蚀性较好。