论文部分内容阅读
随着地下水数值模拟的深入研究,科研人员对于获取实时、精确、详细和可信任的地下水模拟信息的要求越来越高,对数值模拟软件能够针对具有精细网格剖分、长时间跨度特征问题进行模拟提出了迫切的需求。对研究区域的精细剖分往往导致数据占用内存多、求解效率低的问题。为了解决此类问题,一方面人们从数学模型出发,选择新的数值离散方法如(多尺度有限元、拉普拉斯变换有限层、FAC法等)通过减少剖分单元数来降低方程组维数进而降低内存的占用,在满足一定精度前提下提高求解效率;一方面针对数值离散后形成的大型、稀疏、病态的线性代数方程组,发展了多种高效的求解算法,其中预处理共轭梯度方法(PCG)已成为求解大型稀疏线性代数方程组极为有效的算法,而高效预处理器的构建是预处理共轭梯度方法的关键。近年来,区域分解方法因其独特的优势备受关注。论文首先利用区域分解方法构建预处理器,给出区域分解预处理器(DDP, Domain Decomposition Preconditioner)实现的详细步骤,并与预处理共轭梯度方法结合成为区域分解预处理共轭梯度法(DDP-PCG)。将区域分解预处理共轭梯度法应用于一具有解析解的承压水流问题,验证了方法的可信性。对研究区进行不同规模剖分,分别采用CG、Jacobi-PCG、SSOR-PCG、DDP-PCG方法求解上述均质承压水问题,计算结果表明:在各种网格规模下,DDP-PCG的迭代次数均明显低于其他方法,并且其迭代次数几乎不随网格规模发生变化,说明了DDP-PCG方法具有较强的鲁棒性;然而DDP-PCG方法的CPU耗时却不是最低的。经分析上述现象正是由于子区域问题求解效率低引起的。子区域上的快速算法是区域分解算法的基石。论文基于有限单元法,给出Dirichlet、Neumann边界11种组合模式下矩形区域均质承压水稳定流问题的傅里叶分析方法(FAM, Fourier Analysis method),对于傅里叶分析中的各种变换公式均采用快速傅里叶变换(FFT, Fast Fourier Transform)算法进行计算,并编制了相应的计算机程序,实现了均质承压水稳定流问题的快速求解。接着针对11种组合模式下的模型进行数值试验,将FAM方法的计算结果与解析解或者其他数值解对比,说明了FAM的可信性。采用存在解析解的单井定流量抽水承压水稳定流模型进行数值试验进一步验证了FAM的可信性,并且对该模型研究区进行多种不同模式剖分,分别采用FAM和迭代法(Jacobi、Gauss-Seidel、SOR、PCG)求解,计算结果表明:剖分精度越高,在求解精度相当的情况下FAM的求解效率越显著。此外针对均质承压水稳定流问题,采用FAM不需计算和存储原始系数矩阵,从而节省了大量内存空间。对于DDP-PCG方法,当子区域问题采用FAM求解时,得到基于傅里叶分析的区域分解预处理共轭梯度法(A-DDP-PCG, DDP-PCG based on Fourier Analysis)。文中针对水文地质问题给出子区域划分模式、相应子区域对应的傅里叶分析方法,以及FA-DDP-PCG的求解步骤,并编制了相应的计算机程序。采用具有解析解的均质承压水模型验证了FA-DDP-PCG的可靠性。接着对该模型研究区进行不同规模网格剖分,均采用CG, Jacobi-PCG, SSOR-PCG, FA-DDP-PCG求解,结果表明与CG, Jacobi-PCG, SSOR-PCG相比,在一定精度范围内,FA-DDP-PCG的求解效率更高;并且随着网格规模的增加,A-DDP-PCG的求解效率优势更加显著。对承压含水层介质参数连续变化和突变情况,进行大规模剖分,进一步证明FA-DDP-PCG的求解效率高于其它三种方法。对于介质参数连续变化的非均质模型,通过随机试验证明参数aijk(在水流模型中相当于介质的渗透系数或者导水系数)的取值对于算法求解效率影响并不明显,表明FA-DDP-PCG算法的健壮性。对于介质参数突变情形,研究了介质参数的差异性对算法求解效率的影响。结果表明,FA-DDP-PCG方法可以有效求解强突变介质地下水流问题。因此FA-DDP-PCG方法可以有效求解大规模地下水流问题。