论文部分内容阅读
近年来我国汽车工业发展迅速,如何研制出高安全性、节能环保的新型汽车产品已经成为企业提高自身竞争力的关键。高强钢板在减轻汽车重量和提高安全性能方面具有双重优势,因此在汽车行业受到了广泛的应用。高强钢板零件冲压生产时,模具结构受力大幅增加,给模具结构设计带来了新的挑战。由于设计理论的缺乏,传统模具设计往往依赖经验准则,通过选取较高的安全系数来保证模具结构的刚度和强度,势必造成了模具成本的增加。为解决高强钢板级进模模具结构设计缺乏理论指导的问题,本文对高强钢板级进模模具结构分析及优化设计方法进行了研究,旨在对模具结构定量分析,探索模具结构优化设计新方法,具有重大的理论意义和实用价值。主要研究内容如下:(1)以某高强钢板汽车底梁加固件为研究对象,结合零件的特征进行了冲压成形工艺性分析、冲压工艺方案拟定及排样方案设计,并按照排样方案对级进模总体结构和关键部位结构进行了设计。(2)运用Dynaform软件进行了汽车底梁加固件的12工位级进冲压成形全工序有限元数值模拟,详细分析了关键工位零件的成形质量及模具受力情况;对汽车底梁加固件进行了级进冲压试验,结果表明数值模拟结果与试模效果比较吻合,并对比了零件实际冲压成形后厚度分布与数值模拟结果,验证了数值模拟结果的准确性。(3)通过冲裁试验和数值模拟相结合的方法,获取了汽车底梁加固件材料的断裂阈值;采用Deform-3D软件对零件冲裁工序进行了有限元数值模拟,获得了冲裁成形时模具的受力情况,对冲裁力的数值模拟值与理论值进行了分析比较,结果表明数值模拟结果较为可靠。(4)采用载荷映射的方法将汽车底梁加固件板料冲压成形数值模拟所获取的节点力映射到模具的工作表面,构建了级进模模具结构分析的力边界条件;利用结构分析软件Hyper Works/Radioss建立了汽车底梁加固件级进模模具结构多工况结构分析有限元模型并对模具结构的变形量进行了分析,以明确结构设计优化的空间。(5)采用HyperWorks/Optistruct软件,以结构减重为目标,基于变密度法对汽车底梁加固件级进模模具结构进行了拓扑优化迭代计算,获取了不同单元密度阀值情况下的最佳材料分布。提出了改进的优化效益指标概念,探索了结构拓扑优化单元密度阀值的选取方法。利用UG软件对模具结构进行二次设计。通过与按传统方法设计的模具结构分析结果对比表明:1)重构后的下模模具结构相对于原结构重量减少了13.22%,最大变形量减小了13.73%;2)重构后的上模模具结构较原结构减重了26.61%,最大变形量降低了4.84%。(6)对汽车连接器件级进模模具结构进行了拓扑优化设计,与按传统方法设计的模具相比,优化重构后的模具在重量保持不变的情况下最大变形量减小了36.49%,对重构后的级进模在冲压成形中的应变值进行了测量,并与结构分析数值模拟结果进行了比较;分析了模具结构优化前后零件的成形质量,验证了连接器件级进模模具拓扑优化结果的准确性,进一步说明了本文所提出的多工位级进模模具结构分析及优化设计方法是切实可靠的。