人字齿行星齿轮传动系统动力学特性研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:xiaov705
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
人字齿行星齿轮传动因其结构紧凑、承载能力强、传动平稳等优点,被广泛应用于航空、舰船和汽车等高速重载的场合。然而,由于其结构复杂、性能影响因素众多,在应用中仍面临诸多技术难点亟待解决。本文针对人字齿行星齿轮传动系统的振动和噪声控制问题,进行了静力学接触分析和动力学响应预测的研究,以期完善基础理论并推动实际应用。为提高齿面接触分析精度,在利用范成法得到齿廓方程的基础上,直接由节点至单元生成三维斜齿轮有限元模型。提出了六面体网格分级剖分方法,对接触区域内的网格进行了局部细化,并将插值齿面节点向理论齿面映射,实现了三维斜齿轮有限元精细化建模,为系统动力学参数计算奠定了基础。将齿面接触分析和精细化有限元建模相结合,解决了修形齿面接触分析中的刚体位移导致的收敛问题,实现了含误差和修形的高精度齿轮有限元接触分析参数化建模,以探索齿面微观修形优化和啮合刚度计算等接触分析问题。以传动误差最小为目标进行了齿面修形优化,确定了齿面修形参数。分析了齿面修形对齿轮接触分析结果的影响,得到了修形齿轮的传动误差和时变啮合刚度,为动力学分析提供了准确可靠的激励参数。为了对系统动力学特性进行分析,根据人字齿行星齿轮传动的结构和受力特点,考虑每个构件6个方向的自由度,建立了弯-扭-轴-摆耦合时变非线性动力学模型。该模型计入了时变啮合刚度、啮合阻尼、传动误差、支撑刚度、陀螺效应和齿侧间隙,并考虑了啮合相位、偏心误差、齿形误差、齿廓修形、交错角和交错角误差等内外参数激励的影响,更贴近工程实际。通过对人字齿行星齿轮传动系统的固有特性及其参数敏感性的研究,预测了系统的固有频率和模态振型,并将其归纳为扭转振动模式、摆动振动模式、轴向振动模式和内齿圈振动模式。固有特性的参数敏感性分析发现,随着轴承支撑刚度和啮合刚度增加,系统固有频率升高,不同阶次固有频率的模态跃迁点呈现出分组现象,根据模态跃迁规律给出了轴承支撑刚度选择范围的建议,并揭示了陀螺效应使系统低阶固有频率降低的现象。对影响系统动态响应特性的设计参数和制造误差等进行了参数敏感性分析。结果表明,随着制造误差的增大,系统受载不平衡性逐渐增大,齿面啮合力激增,而齿面修形可以有效改善齿轮的啮合性能,降低系统振动。对含误差的人字齿行星齿轮传动系统浮动均载特性分析表明,太阳轮全浮动、行星轮轴向浮动的安装方式,有利于补偿系统误差引起的载荷不平衡。为验证系统动力学理论模型的准确性,搭建了人字齿轮行星传动系统动力学特性验证平台。将三轴振动加速度计直接安装到活动构件上,通过多级滑环防缠绕设计实现了振动数据实时传输。开发了基于Labview的多通道数据同步采集系统,实现了数据的同步时钟采样。通过与理论仿真模型的对比分析,验证了动力学模型的准确性。本文将齿轮接触分析和精细化有限元模型结合,探索了变啮合刚度计算和齿面微观修形优化问题。建立了人字齿行星齿轮系统时变非线性动力学模型,考虑了设计参数和制造误差的影响,对系统动力学特性进行了理论分析和实验探索,研究结果完善了人字齿行星齿轮系统动力学分析理论,具有重要的理论意义和工程实用价值。
其他文献
随着对摆式积分陀螺加速度计(Pendulous Integrating Gyroscopic Accelerometer,PIGA)精度和稳定性的要求越来越高,通过改进加速度计材料、设计和加工工艺的方法来提升使用精度变得日益困难。因此,如何通过先进的测试方法对PIGA的误差模型系数进行精准的标定,成为了进一步挖掘仪表精度潜能的关键问题。本文将针对PIGA误差模型系数的标定方法展开研究,全面分析仪表
在实际生产和实践中,绕等温柱体(圆形柱体,方形柱体)的尾流和传热研究得到了广泛的关注,例如电子芯片冷却系统(处理器和功率芯片),微型热交换器,燃料电池,数据中心和涡轮机叶片冷却系统等。随着技术的进步,热工科研人员正在寻找不同的机制来提高相互作用物体和周围流体之间的热工性能。常见的强化传热机制可分为主动和被动两种。主动方法需要外部能量输入来维持系统,进而以强化传热。而被动方法不需要额外的能量来源,仅
为全面了解汉氏葡糖醋杆菌(Komagataeibacter hansenii) HDM 1-3的发酵特性,为提高纤维素产量提供基因组信息,对其基因组数据进行测序分析。采用PacBio平台对该菌株进行全基因组测序,基因组由1个3 659 612 bp染色体和2个质粒组成,编码3 820个蛋白质,含有7个纤维素合成酶基因。基于16S rRNA的系统发育分析表明了K.hansenii HDM1-3相对于
免疫系统可通过特异性免疫与非特异性免疫发挥免疫防御、监视和自身稳定等功能。机体免疫系统出现异常或免疫能力下降时,均会导致免疫调节功能紊乱,严重时甚至可引发多种免疫相关疾病。因此,维持机体免疫系统的稳定对人体生命健康具有重要意义。海洋中含有丰富的资源,海洋中的多种植物即可作为食品来源,也可作为增强机体免疫的药物。孔石莼是一种大型绿藻,广泛分布于中国东海和南海沿岸,含有丰富的生物活性物质,其中多糖的含
声音信号中包含着大量关于人们生活环境的信息。随着互联网上音频数据的日益增多,以及人们对智能设备依赖程度的增加,迫切希望机器能具有更多的感知和理解声音的能力。针对声音感知与理解的研究,目前主要集中在声学事件识别和声学场景分类上。二者同属于音频分类的范畴,其所要解决的关键问题之一,就是如何学习出有效的音频语义特征表示。鉴于音频是一种时序性信号,其语义内容既取决于所包含的各个基元内容,也取决于各个基元间
随着微机电系统和纳米技术的高速发展,微纳尺度的热量传递引起了广泛关注。微纳尺度条件下,经典的傅里叶导热定律不再成立。声子作为绝大多数半导体的热载子,其微观动力学行为对微纳尺度热量输运有着重要影响。对于有限尺寸微纳结构内的声子导热,声子玻尔兹曼方程是目前最广泛使用的理论模型之一。由于材料内不同频率的声子的平均自由程和弛豫时间通常会跨越好几个数量级,声子输运本质上是个多尺度问题。迄今为止,大多数求解声
作为最重要的化石燃料之一,未来几十年内煤炭仍然在我国的能源消耗中占主要地位。但是,煤炭利用会引起严重的环境问题。而生物质能属于可再生能源,可为世界提供约14%的能源消耗。但是,生物质原料的供应问题,限制了其大规模的工业应用。煤与生物质共利用可以弥补两者之间不足,是一种潜在的有前途的技术方法。煤与生物质共热解作为共热化学转化过程中的初始阶段,对后续过程起到至关重要的影响。在共热解过程中,煤与生物质之
在过去的几年中,随机变分推断在多种机器学习任务中显示出其强大能力,其应用涵盖自然语言处理和信息检索等各个领域。各领域应用不断收集待处理的数据,引发了大数据时代的到来。目前,数据的增长速度早已远超硬件能力的增长速度,因此分布式平台的使用成为大数据训练的主流解决方案。遗憾的是,关于随机变分推断的大多研究仍然停留在解决应用数学问题的阶段。而分布式随机变分推断的设计包含更多系统工程问题,如设计数据和模型的
水利水电工程是解决国家“十四五”提出的“碳达峰”和“碳中和”目标的重要措施之一,其中,面板堆石坝作为其主流坝型之一,其需求与发展也将会迎来一个高速发展期。混凝土面板,作为面板堆石坝的防渗结构,属于典型的薄型长条状结构,极易在施工阶段或运行初期产生裂缝。这些裂缝的存在,不仅导致混凝土面板的渗水,而且会显著加速环境中有害离子向混凝土内部的迁移或软水侵蚀下混凝土内部钙离子的溶出等,加剧混凝土面板的劣化程
氢氧化镍(Ni(OH)2)理论比电容高(2 082 F g-1)、环境友好和价格低廉,在超级电容器领域有广阔的应用前景。然而,Ni(OH)2本征电导率很低(~10-17S cm-1),这导致电子传输速率低、反应动力学慢,阻碍了电容性能的提高;电化学反应过程中,Ni(OH)2体积变化较大,降低了其结构稳定性和多循环性能。为了解决上述问题,本文将Ni(OH)2与具有更优异导电性能和电化学性能的材料(石