鲁棒数字水印性能优化方法研究

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:qq2009liuwei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着互联网和多媒体技术的飞速发展,数字信息以图像、视频、文字等形式被广泛传播。多媒体数据易被非法获取和篡改,从而导致严重的信息安全问题,例如版权纠纷、数据泄露等。作为多媒体数据版权保护的一种有效方法,数字水印技术在不影响视觉效果的情况下,将标识信息嵌入到多媒体数据中,从而利用提取的嵌入信息确认版权。本文针对最广泛使用的多媒体数据载体,即图像和视频,研究了不同嵌入规则下的鲁棒盲水印方法,优化其在水印图像质量、水印提取准确率和实时性上的性能,取得的主要研究成果如下:(1)提出一种基于空域最小可觉差(Just-noticeable Difference,JND)模型的视觉优化图像水印方法,解决了水印图像的非纹理区域存在明显视觉失真的问题。首先,利用空域JND模型约束每个空域像素的改变,并引入差值图像方差约束相邻像素的改变,然后构建一个优化问题求解最优的水印嵌入强度,这与空域的人眼视觉特性相符。与经典的基于DCT域JND模型的图像水印方法相比,相同PSNR下,所提方法的水印图像和宿主图像之间的SSIM更高,水印图像视觉质量更高。(2)提出一种基于多尺度特征的鲁棒图像水印方法,该方法利用深度学习提高了水印图像质量以及水印提取准确率。首先,在水印嵌入网络中,冗余嵌入水印信息。然后,引入具有不同大小卷积核的Inception-Res Net网络,更好地融合水印信息和宿主图像。同时在水印提取网络中,利用Inception-Res Net网络获取多尺度的特征,提高水印提取准确率。最后,采用两阶段的训练方法,保证水印图像质量的同时增强鲁棒性。在COCO数据集上的实验证明,与经典的Hi DDe N方法相比,所提方法提高了抵抗攻击的鲁棒性,水印提取准确率平均提高6.4%。(3)提出一种基于帧差的高效视频水印方法,解决了当前视频水印方法难以抵抗几何攻击、实时性低的问题。首先,修改相邻视频帧U通道每个像素嵌入1比特数据,同时引入空域JND模型约束修改量以确保水印视频质量。该方法在不进行几何矫正的情况下,通过计算帧差对水印信息进行盲提取,降低了计算复杂度。在标准视频序列上的实验证明,该方法可以抵抗严重的几何攻击。而且,与变换域视频水印方法相比,在相同嵌入容量和PSNR下,所提方法对于1080p视频的水印嵌入和提取速度提高了3倍以上。
其他文献
在移动互联网时代,爆炸式增长的在线内容使得人们深受信息过载问题的困扰。作为缓解信息过载的利器,推荐系统能够从用户-项目历史交互中挖掘用户的个性化偏好,以过滤掉用户不感兴趣的内容。众所周知,传统推荐模型通常面临着数据稀疏和冷启动等问题,因而近年来越来越多的研究关注于融合社交网络等辅助信息来对用户兴趣进行充分建模,以改进现有推荐算法。然而,本文通过研究发现,现有社交推荐算法还存在以下问题:社交域对用户
为了帮助像考古学家、历史学家、网络审查员这类人从文档中快速查找感兴趣的内容,使用深度学习等技术对文档(如手写历史文档)进行快速、实时、精确的关键字定位是相关人员所迫切需求的,其在历史文献查阅、视觉搜索、图像检索领域具有广泛的应用价值。然而由于手写历史文档图像数据集标注困难且费时费力,使得训练数据严重缺乏不足以满足深度学习模型训练的需求。此外,手写历史文档图像具有多样的写作风格、多变的视觉外观、不均
目标检测技术是计算机视觉中的核心技术,被广泛应用在智能视频监控、自动驾驶、航空监测等领域。同时,随着遥感技术的不断成熟,可获取的遥感数据量急剧增加。因此,遥感图像目标检测技术逐渐成为研究热点,其指的是设计一个目标检测器,可以高效地识别出遥感图像中的感兴趣目标且对其进行定位。然而,此领域始终面临着许多严峻的难题。首先,由于图像涵盖的物体广泛且杂乱,造成了检测时复杂背景干扰的问题。然后,图像中的小目标
短句语义相似性判别作为自然语言处理的基础任务,对于下游的数据挖掘、信息检索、机器翻译等任务具有极其重要的作用。在目前基于匹配聚合框架的语义相似性模型中,序列对齐的过程中只考虑了单个特征空间的语义信息,并且对于全局信息的利用不够充分。另外,将序列转化为固定维度的向量的单步预测方式也会造成序列中重要信息的丢失。解决上述问题对于模型性能提升具有积极的作用。本文针对上述两方面的问题,提出基于混合全局信息的
近年来,作为一种能展现360度全方位视角的媒介,全景视频在监控、场景展示、赛事直播等领域展现了独特的魅力,逐步走进大众视野。全景视频具有视角广阔、高分辨率、高帧率、数据量大的特点,为存储和传输带来困难,因此亟需有效的全景视频编码方案。在全景视频编码过程中,投影方法与编码算法是最关键的两个要素。本文围绕全景视频的特性,提出了如下几种投影方法,以适配随后的全景视频编码:(1)提出近似均匀采样的少畸变双
随着互联网技术的高速发展,网络中的数据量呈指数式增长。在信息过载的情况下,用户难以及时、准确地发现感兴趣的商品。推荐系统通过分析用户与物品的相关特征,从而为用户过滤大量无关信息,推荐符合其偏好的商品。推荐系统的准确性常因两大问题受到限制,一是评分数量过少导致的数据稀疏问题,二是新物品或新用户加入导致的冷启动问题。本文主要针对这些问题对推荐系统进行研究,以提高推荐结果的准确性。本文立足于推荐系统中与
病理图像检查被誉为诊断癌症、预后和指导治疗的金标准,同时也是连接诊断和治疗的关键环节。它通过观察活体组织结构和细胞病变特征做出诊断,其结果相比其他诊断方法更加权威,是目前最主要也最可靠的癌症诊断方法。随着数字成像设备和病理切片制作技术的不断发展,病理医生可以借助先进的成像设备扫描活体组织样本,并通过计算机观察其生成的全切片图像。然而,全切片图像的分辨率极高,并且图像内容复杂,涵盖了百万数量形态多样
文字记载了几千年人类的文明和历史,是人类信息中最重要的载体。直至今日,现实生活中的众多场景都使用文字形式来进行信息交互。而图像是记录文字信息最快速的载体。在快节奏的生产生活中,信息的电子化处理已成为一种不可逆转的趋势。识别并理解图像中的文字信息就具有很高的研究价值和广泛的应用场景,能使生活变得越来越智能化和便捷化。虽然文字识别技术已经发展了多年,但是由于中文汉字的字符类别多、字形复杂、词频不均衡,
可逆水印,作为一种特殊的数字水印技术,需要提取方在正确提取水印后无失真的恢复原始载体。这种可逆性对于医学、军事和法律等具有高保真要求的特殊领域至关重要。但是,含水印图像在信道的传输过程中会产生一定的质量损失,这就要求可逆水印同时可以抵抗一定程度的攻击,比如JPEG压缩和噪声等非恶意攻击。因此,鲁棒可逆水印(Robust Reversible Watermarking,RRW)技术应运而生。鲁棒可逆
随着无线通信技术的不断发展,车联网正朝着异构化的趋势不断演进。异构车联网将短距离通信、蜂窝网等技术结合在一起,满足了不同场景下的车载业务需求。面对车联网中复杂的网络拓扑和严苛的通信条件,如何保证车辆移动时网络连接的稳定性,提升车联网技术辅助下车辆的驾驶安全是目前学术界研究的热点。早期的异构车载网络大多依靠远程云服务器进行海量数据的分析与决策,由于传输距离较远很难对一些时延敏感型数据进行实时处理。利