论文部分内容阅读
草甘膦,作为全球广泛施用且用量最高的高效、广谱型苗后除草剂,在许多国家的土壤及地下水中均有检出;近年来,全球关于草甘膦的致癌性虽然颇具争议,但是其对人体和生态的毒性效应已被许多专家学者证实,因此草甘膦是世界范围内地下环境中值得重点关注的有机污染物。在集约化农业生产背景下,我国东北产粮区同样以草甘膦为主要除草剂,近十年内输入耕地的草甘膦总量急剧增加,导致其在土壤中累积残留。在农灌驱动下,地下水草甘膦的潜在污染风险不容忽视。我国东北地区土壤和地下水普遍具有原生铁锰含量丰富的特点,且严重超标。随着水田面积不断扩大,地表水不足以满足日渐增长的农业用水要求,地下水也成为该地区的重要灌溉水源。迄今为止,东北地区特殊地下环境中草甘膦的系统研究鲜见报道,富含原生铁锰的农田包气带对草甘膦污染的截留机理、相关地下水的污染风险也有待探究。本文依托―呼兰河流域典型地区水资源形成机理与演化规律研究‖项目,以绥化水稻种植区为研究对象,针对土壤原生铁锰含量丰富、灌溉用水铁锰含量超标、草甘膦频繁且过量施用问题,以水文地质学和水文地球化学理论为指导,通过野外调查、室内实验及数值模拟方法,揭示草甘膦在研究区地下环境中的迁移转化规律,以及高铁锰地下水灌溉驱动下草甘膦迁移转化及其变化机制。取得主要研究成果如下:1、场地钻孔调查及灌溉用地下水水质特征分析结果显示:包气带岩性从上至下主要为黑褐色亚粘土、褐色中砂,其中上层原生铁锰含量高于我国土壤平均水平多达10倍;农田灌溉用地下水中铁、锰浓度分别在1.42~34.3 mg/L、0.8~13.1mg/L之间。2、基于草甘膦水解、化学降解、生物降解等转化批实验研究及络合反应形态变化分析,得出:(1)草甘膦溶液几乎不发生水解,但水中铁锰离子导致其存在形态发生变化,部分自由态转化为络合态;(2)草甘膦在场地介质中发生化学降解,降解率低于5%;(3)草甘膦包气带转化机制主要为生物降解,剖面上降解率从浅至深逐渐减小,与土壤降解菌菌属丰度及草甘膦生物可利用性有关。3、以场地各岩性介质为吸附剂、不同类型灌溉水为背景溶液,开展草甘膦静态吸附/解吸实验,结果表明:(1)包气带介质吸附容量大小顺序为褐色亚粘土>黑色亚粘土>褐色中砂,无定形氧化铁组分及pH等理化性质对介质吸附性能有关键影响;(2)地下水中铁锰的存在对草甘膦吸附起促进作用,主要由于铁锰离子与溶液中草甘膦的络合作用、与介质表面H~+的交换反应而导致溶液pH降低、被吸附于介质后为溶液中草甘膦提供新吸附位等三种原因,土壤有机质含量丰富时,这种促进吸附现象更加明显;(3)草甘膦对地下水中铁锰离子的吸附起抑制作用,主要由于草甘膦降低了体系平衡pH、与铁锰离子形成络合物的介质表面亲和力低于自由态铁锰离子。4、草甘膦在场地不同岩性介质中的一维均质柱穿透实验表明:(1)研究区表层土壤对草甘膦的吸附阻滞能力显著高于其它岩性相似土壤,草甘膦在包气带介质迁移能力顺序为褐色中砂>黑色亚粘土>褐色亚粘土;(2)在饱水介质中草甘膦生物降解极小、且被吸附滞留能力有限,包气带介质对草甘膦吸附、降解的同时,亦会导致土壤原生固相铁锰的溶解释放、增大地下水的铁锰重金属污染风险;(3)包气带介质对草甘膦酸性水流具有较强的pH缓冲能力,饱水介质则几乎无调节能力。5、包气带淋洗实验显示草甘膦残留态定量规律:黑色亚粘土、褐色亚粘土、褐色中砂对草甘膦的持久性滞留量分别为0.92、4.17、0.15 mg/g。6、高铁锰地下水灌溉与地表水灌溉相比,导致包气带介质对溶解态草甘膦的吸附滞留量有所增加、降解转化量减少,饱水介质吸附量增加、降解量不受影响;包气带介质对残留态草甘膦的持久性滞留量增加,然而两种灌溉水条件下,土壤渗滤液中草甘膦、铁、锰存在形态一致,因此滞留能力增加主要由铁锰离子形成新吸附位所致;地下水中铁锰离子抑制了黑色亚粘土原生铁锰释放、与进水铁锰离子在介质上的吸附沉积有关。