论文部分内容阅读
随着知识经济时代的到来,传统的仅仅依靠企业内部资源的"封闭式"创新模式已然很难适应当前研发成本的剧增、产品生命周期的缩短和竞争的日益全球化,打破企业边界的开放式创新模式应运而生。因此,研究开放式创新对企业价值甚至是整个供应链价值的影响显得尤为重要。由于受各种因素的影响,任何一种创新在真正实施之前创新效果都是难以确定的。鉴于此,本文充分考虑创新效果带来的不确定性,对供应链价值创造问题进行了研究探讨。首先,根据供应链的运行状况建立非线性规划模型,最大化制造商利润并同时满足零售商及开放式创新主体期望利润。同时针对开放式创新模式下创新效果不确定的情况,引入了不确定的区间量ui∈[ui0-ui,ui0+ui]构建了带有不确定量的非线性规划模型——不确定规划模型。针对不确定规划的不确定量,考虑模拟自然界中带有随机行为的群智能算法,设计了离散PSO算法。其次,又综合考虑不确定量对规划的目标函数以及决策变量的影响,运用鲁棒优化方法在目标函数中引入参数IΓ对原模型进行了分析,得到了不确定规划模型对应的鲁棒替代模型,该模型是一个非凸的非线性规划问题——DC规划,本文针对该DC规划中含有整数变量的情况,引入惩罚函数结合分支定界算法及DCA算法的思想,设计了具有全局收敛性的B&B-DCA算法。最后设计算例进行了算法实现,说明了离散PSO算法虽然对于单次实验具有较好的收敛性,但是多次实验看来,仍随机性较强,稳定性不足;而鲁棒优化方法显示了良好的有效性和稳定性,B&B-DCA算法在全局收敛性方面有比较好的表现。并且算例进一步说明,随着参数r增大,供应链上不确定数据的增多,供应链的整体利润也随着制造商可以参考的信息量的减少而减少。制造商可以根据自身对利润和不确定性的偏好程度,选取合适的Γ值,合理进行生产计划的决策。本文在供应链视角下,考虑开放式创新效果的不确定性,对不确定环境下供应链最优产量的决策及开放式创新的定量研究具有重要的意义。