论文部分内容阅读
飞轮储能系统可以长时间、小功率从电网吸收能量,短时间、大功率为负载供电,因此可作为航母电磁弹射系统等需要脉冲功率的设备的供电装置,脉冲发电机则是这类飞轮储能系统的核心部件。本文提出了一种新型的级联式笼型转子绕组飞轮脉冲感应发电机(Flywheel Pules Induction Generator,FPIG),该电机沿轴向分布有两个定子,分别为控制定子与功率定子,当电机运行于发电状态时,可通过控制绕组对电机无功功率进行调节,而在电机转速降低时仍能保持输出端电压的稳定。本文建立了该种结构电机的数学模型,并分析了其运行特性,同时提出了该种结构电机的设计方法,并制作了样机,对其进行实验研究。首先,提出了级联式笼型转子绕组FPIG的基本结构,分析了FPIG运行的内部物理过程进,揭示了通过控制绕组调节FPIG无功维持功率绕组输出端电压稳定的运行原理。深入分析了各绕组的自感漏感系数、绕组间的互感漏感系数等参数,建立了系统在静止坐标系和同步旋转坐标系下的动态数学模型,为FPIG控制系统的分析、设计打下了基础。其次,研究了级联式笼型转子绕组FPIG的运行特性,提出了由控制绕组与励磁电容共同为电机提供运行所需无功功率的励磁控制策略。分析了电机运行时的电容建压原理,并对电容励磁时影响系统输出端电压的因素进行了探讨,探究了励磁电容、转速、负载变化对系统端电压的影响规律。接着,利用等效电路图法分析了电机功率平衡关系。分析了系统各部分无功功率随转速的变化规律,为电机的电磁设计及励磁控制回路的设计打下了基础。然后,分析了级联式笼型转子绕组FPIG的设计特点,探究了其在设计时应遵循的原则,提出了该种结构电机的设计流程和设计方法并进行了电磁设计,包括基本尺寸的确定、定子槽型设计、控制绕组与功率绕组设计、转子与飞轮设计等。最后,给出了级联式笼型转子绕组FPIG励磁控制回路,提出了通过合理选择励磁电容值来降低控制绕组容量的优化方法,确定了系统在一定转速运行范围内控制绕组容量最小时的励磁电容值。设计了励磁电流调节单元,即利用电力电子开关器件在电机运行转速发生变化时实时改变励磁电容值。此外,进行了有限元仿真与实验研究,验证了级联式笼型转子绕组FPIG工作原理与特性分析的正确性。