论文部分内容阅读
焦炉煤气是一种重要的工业和民用的高热值气体燃料,它也可以作为原料气用于生产氨、甲醇、液化天然气等产品。焦炉煤气在用于燃料气前或作为后续的其他工业的原料时必须对其净化,而净化过程中H2S的脱除尤为重要。随着我国环保政策的日趋严格和用户对原料气要求的不断提高,目前通过湿法脱硫后的焦炉煤气中H2S含量往往很难达到环保以及后续煤气深加工的要求,因此对于开发焦炉煤气深度脱除H2S的工艺是十分必要的。为此,本文采用添加PDS-600催化剂的Na2CO3溶液为吸收剂,在超重力反应器中进行了 H2S的吸收实验,考察了气液接触方式、液体流量、转速、气体流量、进口气体中H2S浓度、吸收液中Na2CO3浓度对脱硫效率的影响情况,参考工厂运行数据配制了模拟贫液,并进行了吸收实验,对超重力反应器在脱硫富液再生中应用进行了初步探索。推导了超重力反应器中气相总体积传质系数KGa的数学表达式,并考察了各因素(Na2CO3浓度、液体流量、进口气体口H2S浓度、超重力反应器转速和气体流量)对KGa的影响。Na2CO3吸收实验结果表明,Na2CO3浓度6.0g·L-1,超重力反应器转速在1400 rpm,液气比为5-7 L·m-3,H2S进口浓度为300 ppm时H2S脱除率可达99%以上,H2S出口浓度可以小于5 ppm。以模拟贫液为吸收剂时在适宜的操作条件下气体出口中的H2S浓度可小于 15 ppm。在相似的实验条件下逆流操作方式压降高于并流,气液逆流的脱硫性能优于气液并流,并流操作时在更高的转速和更大液体流量条件下也可达到逆流的脱硫效果,并流的优势在于压降较低。气相总体积传质系数随着吸收液液体流量、气体流量、Na2CO3浓度的增大先增大后趋于平缓,随着超重力反应器转速和进口气体中H2S浓度的增大先增大后减小。利用实验数据关联拟合出了KGa关联式,实验值与KGa关联式计算的值的误差基本在±150%以内,此关联式能够较好地预测实验结果。通过实验对比确定富液中HS-的分析方法为乙酸锌加热法。超重力反应器中富液再生正交实验结果表明对再生效果影响显著性顺序为:富液流量、再生空气流量、超重力反应器转速。