【摘 要】
:
拓扑材料,包括拓扑绝缘体、拓扑半金属和拓扑超导体等,因其独特的电子结构和物理性质已成为凝聚态物理研究的前沿课题。AMnPn2(A=Ca,Sr,Ba,Eu和Yb;Pn=Bi和Sb)体系为寻找新的拓扑材料和研究拓扑物性提供了一个重要平台。本论文采用角分辨光电子能谱对CaMnSb2、BaMnSb2和EuMnSb2的电子结构和拓扑性质进行了系统的研究。论文主要包括以下几个部分:1.简单回顾了拓扑物理学发展
【机 构】
:
中国科学院大学(中国科学院物理研究所)
【出 处】
:
中国科学院大学(中国科学院物理研究所)
论文部分内容阅读
拓扑材料,包括拓扑绝缘体、拓扑半金属和拓扑超导体等,因其独特的电子结构和物理性质已成为凝聚态物理研究的前沿课题。AMnPn2(A=Ca,Sr,Ba,Eu和Yb;Pn=Bi和Sb)体系为寻找新的拓扑材料和研究拓扑物性提供了一个重要平台。本论文采用角分辨光电子能谱对CaMnSb2、BaMnSb2和EuMnSb2的电子结构和拓扑性质进行了系统的研究。论文主要包括以下几个部分:1.简单回顾了拓扑物理学发展的历史,介绍了一些基本的概念,阐述了目前拓扑材料主要的分类,并且对各类拓扑材料的研究情况进行了概括,最后对AMnPn2(A=Ca,Sr,Ba,Eu和Yb;Pn=Bi和Sb)类材料进行了详细的介绍和总结。2.介绍了 ARPES的原理、设备以及实验流程,接着介绍了我们实验室的ARPES系统,重点介绍了基于深紫外激光的大动量极低温光电子能谱仪以及关于该系统的设计、搭建及测试结果。3.搭建了分子束外延(Molecular beam epitaxy)系统。介绍了分子束外延技术以及配套的表征手段(STM等)基本原理。重点介绍了所搭建的分子束外延系统的设计、安装以及测试相关的工作。4.利用化学气相输运法成功生长了Zr(Te,Se)5单晶,利用移行浮区法生长了 Ca-Sr-Cu-O 类单晶(SrCuO2 单晶,Sr2CuO3 单晶,Ca0.24Sr0.56CuO2 单晶和Ca0.86Sr0.14CuO2无限层单晶),对生长的单晶样品进行了成份、晶体结构和物性表征,为后续研究奠定了材料基础。5.利用高分辨的ARPES测量,结合能带计算,首次研究了 CaMnSb2的电子结构。观测到CaMnSb2的费米面主要由布里渊区中心r点周围的一个空穴型费米面和布里渊区边界Y点的一个微小空穴型费米口袋组成。发现在Y点的微小空穴型口袋起源于各向异性的类狄拉克能带,线性能带的交叉点位于费米能级之上约10meV。在Г点周围的空穴型费米面上发现了沿Г-X方向的强烈的谱重积累,表明沿空穴型费米面的态密度具有很强的各向异性。此外,观察到沿Γ-Y线的额外的能带特征,不能被已有的能带计算所解释。这些结果表明,在Y点的类狄拉克结构可能在决定CaMnSb2的物理性质中起重要作用,为理解和探索CaMnSb2和相关材料的新物理性质提供了重要信息。6.利用高分辨的ARPES测量,结合能带计算,发现BaMnSb2表现出奇异的电子结构。(1)所有测得的能带几乎都是线性的,线性能带延伸到很深的能量范围(~1eV);(2)观测到的费米面主要由Г点周围的一个空穴型费米口袋和Y点上的一个强点组成,这些费米面都是由线性能带的交叉点形成的;(3)测量的电子结构明显偏离已有的能带计算结果。7.利用角分辨光电子能谱测量了 EuMnSb2的能带结构,发现了其电子结构在第一布里渊区和第二布里渊区不等价的现象,表明EuMnSb2中存在目前未知的因素在决定着其电子结构。
其他文献
被子植物形态性状的演化是系统与进化植物学研究的重要内容,花部器官因包含了最多的分类、系统和进化信息而受到格外重视。我们选择防己科下的一个族蝙蝠葛族,从花形态发生和分子系统学两个层面进行研究。在澄清其属间系统亲缘情况下,以此为背景重点探讨分子系统发育框架下形态性状进化的最可能趋势。 基于核DNA ITS和叶绿体DNA trnL-F基因的系统发育分析表明,1.蝙蝠葛族为支持很好的单系,两个分子标
利用测定藻体净光合放氧速率的方法研究了几种主要理化因子对布朗葡萄藻光合作用的影响,探索有利于其生长繁殖的最佳理化条件,促进快速生长繁殖;全面地研究了碳源浓度、培养液深度和酸碱度对CO2吸收率的影响,以提高培养过程中CO2的利用率。主要结果如下:1、B.braunii UTEX 572的适宜光照强度范围400—1600μmol.m-2.s-1,光饱和点在800μmol.m-2.s-1附近;适宜温度范
随着人类活动的增加导致水体大量营养物质输入进而对内陆水体水质以及水体生态系统产生了重要影响。由于沉水植物对水体营养物质具有积累和吸收的作用,使得其在水生毒理学领域一直受到广泛的关注。沉水植物不仅仅是水体生态系统的初级生产者,而且对降解水体有害物质,用于水体生态修复具有重要作用。在更大尺度上而言,沉水植物也是水体地球化学循环中具有重要作用,同时也是开展经济高效水体生态修复的重要手段之一。一般而言,植
南水北调中线工程为水源区丹江口库区植物提供了水流这一新的传播途径。本文筛选了在丹江口库区分布而尚未在工程沿线及受水区分布的植物,利用修正后的杂草风险评估系统(Weed Risk Assessment,WRA)评估这些植物的入侵性,并结合水流传播途径和营养繁殖特征,应用一个附加筛选系统进一步评估了这些植物入侵工程沿线和受水区的能力。结果表明:共有145种水源区库区植物尚未在工程沿线及受水区分布,其中
是俄语中典型的话语标记语。语料分析显示,它具有丰富的语用功能。从语篇组织上看,它可用于提示开始、转换和结束,还能用来填补思维空白和修正话语信息。从人际互动上看,它可以示意赞赏、应允和确认,表示礼貌回应、让步和妥协,亦可用于征询意见和实施威胁。对上述功能的认知分析表明,хорошо不仅能够映射说话人的心智活动,制约听话人的话语理解,还可以凸显说话人关注听话人立场的认知意识。
作为一种具有极高实空间分辨率的电子学表征手段,扫描隧道显微学/谱学(Scanning Tunneling Microscopy/Spectroscopy,STM/S)成为凝聚态物理研究中及其重要的表面表征手段。极低温与强磁场在物质科学研究中发挥着越来越重要的作用:极低温可以大大降低电子的热扰动,提高扫描隧道显微镜(Scanning Tunneling Microscope,STM)的能量分辨率;强
量子精密测量告诉我们如何在有限的探针数目和有限的干涉时间里得到最好的信道参数估计。如果我们不使用任何的诸如量子纠缠之类的量子效应,那么我们的信道参数估计误差最好也就是1/√级别的。这就所谓的标准量子极限。量子纠缠等量子效应可以将信道参数估计误差降到1/级别。此所谓Heisenberg极限。但是环境噪声会让Heisenberg极限又变为标准量子极限。此外,很多的量子精密测量方案会要求许多的实验数据。
现代科学技术发展的方向之一是在探索并制造纳米微观结构,在分子尺度上实现特定功能,例如信息的储存与传递,微观物质的传输,能量的利用与转换等。在单个分子或原子的尺度上研究相关纳米结构的空间形貌、物理性能及调控方法将为这些基本单元的设计并应用提供重要的物理基础。然而,目前能对单个纳米结构进行高精度表征的实验手段还非常少,研究深度亦亟待扩展。扫描隧道显微镜(STM)能够在实空间中直接探测并操纵原子分子,与
石墨烯具有新奇的物理性质,将其进行裁剪,可以得到一维的石墨烯纳米带或零维的纳米石墨烯,两者统称为石墨烯纳米结构。由于量子尺寸效应,石墨烯纳米结构可以打开能隙;锯齿状的外围边界进一步使其具有自旋有序的边界态,这些性质使其在传统电子学和自旋电子学方面具有潜在的应用前景。另一方面,石墨烯纳米结构的性质直接由其尺寸、掺杂元素和边界结构决定,因此探索新型的原子级精确结构对研究其性质和应用具有重要意义。通过“
为了开发下一代更安全,能量密度更高的电池体系,固态金属锂电池是研究的重点。固态金属锂电池使用不易燃的固态电解质逐步代替传统液态锂电池中使用的电解液,在某种程度上可以提升电池的安全性;同时,固态电解质的引入,使得利用金属锂作为电池的负极重新成为了可能。然而,固态电解质和金属锂的引入给固态电池的有效运行带来了许多新的挑战,基于此,本论文分别针对金属锂负极和固态电解质引入后带来的问题进行了研究,具体的,