【摘 要】
:
大规模在线开放课程(MOOC,慕课)这一概念自2008年被提出,2012年开始在世界范围内兴起。慕课的诞生旨在为每一位学习者提供平等且高质量的学习资源,特别是在新冠疫情的大背景之下,慕课更是凭借其先天的优势成为了世界各国大力推广的教育方式。但是慕课由于缺乏强约束性,其高退课率以及低通过率也广为学界所关注。越来越多的研究者开始着手研究如何提升慕课的留存率以及通过率,其中,针对慕课平台学习者群体中那些
论文部分内容阅读
大规模在线开放课程(MOOC,慕课)这一概念自2008年被提出,2012年开始在世界范围内兴起。慕课的诞生旨在为每一位学习者提供平等且高质量的学习资源,特别是在新冠疫情的大背景之下,慕课更是凭借其先天的优势成为了世界各国大力推广的教育方式。但是慕课由于缺乏强约束性,其高退课率以及低通过率也广为学界所关注。越来越多的研究者开始着手研究如何提升慕课的留存率以及通过率,其中,针对慕课平台学习者群体中那些存在无法完成课程风险的风险学习者进行识别是其中的一个可行方案。同时,由于学习者在慕课平台学习的过程中会产生大量的学习行为数据,因此很多研究将机器学习技术应用于慕课风险学习者的预测工作中。慕课平台针对风险学习者施加个性化的援助,即可提高课程的留存率以及通过率。为了提升慕课平台的整体学习效果,对平台中存在的风险学习者能够精准的识别,本文通过机器学习技术搭建了风险学习者预测模型,为了提升模型的性能,本文进一步引入了模型融合技术,训练的融合模型在OULAD数据集上取得了最高0.98的AUC分数。本文的主要工作如下:本文基于OULAD开放大学学习分析数据集来开展研究,由于该数据集结构较为复杂,因此本文首先对数据集进行了详细的分析与梳理。在特征工程的工作中,本文希望探究特征时间属性对模型性能的影响,因此使用了两种不同的特征提取方式,最终得到了两个特征集,另外,本文还进一步使用XGBoost评估了特征的重要性,并完成了特征选择工作。针对特征工程得到的两个特征集,本文分别采用了集成学习中的Boosting算法(XGBoost、AdaBoost、GBDT)以及Bagging算法(Random Forest)训练单一模型,并进一步通过Voting以及Stacking的方法构建比单一模型性能更好的融合模型。在上述算法模型的基础上,本文进一步设计并实现了一个慕课风险学习者预测系统。本系统的整体架构为当下广为采用的前后端分离模式,后端使用Spring Boot框架搭建,前端则使用Vue框架搭建。此外,考虑到实际使用时系统中的数据量会越来越大,本系统在进行数据库设计时,对部分数据量较大的表进行了水平分片设计,以提升数据库整体性能。在功能方面,本系统包括了登录与注册、用户权限管理、学习者信息维护、风险学习者预测、风险学习者指导以及数据统计这六大模块。用户通过将学习者的学习数据上传至系统,即可预测学习者是否为风险学习者,预测过程将会调用实验中表现最佳的融合模型,预测结果将会直观的展示给用户,用户还可以选择导出历史预测结果。对于预测结果为有风险的学习者,本系统还提供一键发邮件的功能,用户可以针对这些风险学习者发送邮件,从而达到针对性指导的目的。
其他文献
随着网络的高速发展,用户在网络上的足迹记录越来越多。为了提高用户的体验,满足用户的个性化需求,个性化推荐系统被提出来。传统的推荐系统都是在单域中进行推荐,会面临冷启动与数据稀疏的问题。跨域推荐的提出,实现了可借助其他域中的数据为用户进行推荐,解决了单域推荐系统中存在的冷启动与数据稀疏问题。但随着用户在网络上的交互越来越频繁,越来越广泛,用户在不同域之间的兴趣会产生影响,这时候,跨域推荐不仅仅是作为
随着互联网技术的发展与普及,网络上的信息爆炸式地增长。与日俱增的信息在丰富了网络上信息量的同时,也加大了人们从互联网获取目标信息的难度。智能问答系统作为一种新型的信息服务方式,能够理解自然语言问题并回答,可以更方便、直接地帮用户获取信息。表格具有数据量丰富和结构明确的特点,在网络技术发展的过程中成为了主流的数据载体。为了方便用户从表格中获取信息,表格智能问答——即以表格作为智能问答的答案来源,成为
随着5G时代的到来与数字化社会的快速发展,人们的生活越来越依赖网络。与此同时,方便人们表达自我与网络社交的社交媒体平台也飞速发展。越来越多的用户进入社交媒体平台,留下了丰富的个人动态、个人信息等数据,这些数据都是用户自主产生,具有极大的真实性与可靠性。通过分析用户在社交媒体平台产生的数据,可以做到尽可能全面、准确地描绘用户画像。用户基本属性和用户兴趣是社交媒体用户画像重要的组成部分,对于社交平台运
流行性感冒极易于每年秋冬季在人群中流行传播,严重影响人们的生命安全和生活节奏,流感疫苗可以帮助人体提高免疫力,有效保护人体避免感染流感病毒。目前各国公共卫生机构的一项重要任务就是制定各种流感疫苗接种政策,从而提高流感疫苗在人群中的普及率,保障人民的生命健康安全。由于个人对流感疫苗的了解程度较低或其他原因,有不少人对接种流感疫苗持犹豫或拒绝的态度,这对流感疫苗的接种工作造成了一定的困难。因此需要分析
中国已成为全球第二大经济体,而股票市场则是我国经济十分重要的环节,改革开放进入二十一世纪以来,我国的股票市场不断发展与完善,股票趋势预测的话题备受关注,若能准确地判断股票在未来的波动趋势,这将产生巨大的价值,带来收益的同时也能规避风险。计算机技术的发展,使得使用神经网络技术对股票趋势进行预测成为热门研究领域,如使用长短期记忆神经网络模型、循环神经网络模型、支持向量机模型等,基于股票的历史数据,对股
随着大数据时代的到来,数据资源的价值逐渐受到关注与认可,人们对于数据交易的需求也在日益增加。然而,我国目前的数据交易仍面临着诸多问题,其中,数据交易过程中的数据安全问题是重中之重。类似于传统的商品交易,数据交易也是多方参与主体相互促进、相互制约的演化博弈过程。因此,本文从数据安全角度出发,展开对数据交易四方参与主体的演化博弈研究。本文基于数据安全角度,首先,结合数据交易的发展现状和现有研究,将政府
随着信息技术的快速发展,人们同时扮演着信息的消费者和生产者两个角色。作为一种从海量数据中快速发现信息的技术手段,推荐系统逐渐成为解决信息过载问题的主要方式之一,被广泛应用于电子商务、音乐/视频服务、社会媒体、广告策略等众多领域。面对推荐场景中日渐丰富的多模态信息,传统推荐方法无法有效挖掘用户深层次的偏好特征,很大程度上不能满足用户个性化推送的需求。近些年,研究者们将用户评分、评论、浏览等数据进行特
近年来,Web of Science、Google Scholar等文献数据库不断更新完善,为研究者们提供了丰富的文献参考。文献量大、研究因素复杂成为了许多研究领域的一个特点。研究者在研究初期需要快速准确地对大量文献内容进行梳理与科研统计,了解研究领域的发展趋势和方向,以开展新研究。其中,研究两代人社会地位变化的“代际流动”(Intergenerational mobility)领域,文献量日益增
在我国大力推行建设数字强国的背景下,将计算机技术与金融知识相结合,分析处理海量数据并从中提取规律,从而构建量化交易策略,已经成为许多投资者普遍选择的投资方式。在人们的物质生活得到了极大提升之后,越来越多的人参与到股票投资之中,程序化的股价研究既能规避投资者因情绪变动而出现的主观误判,又能在庞大的数据中挖掘出人力无法发现的隐藏规律,因而被众多专家学者所关注。投资者希望能够制定出一种智能化交易策略,从
在互联网时代,类似今日头条这样的在线新闻分发平台吸引了数以亿计的用户。由于在线新闻服务的便捷性和时效性,许多用户的新闻阅读习惯已经从传统报纸转向数字新闻内容。那么在信息爆炸时代,平台如何为用户过滤筛选出用户有阅读欲望的新闻成了新闻推荐领域研究的重点任务。协同过滤算法和神经网络模型是新闻推荐领域研究的两大重要方向。然而,现有的很多方法大都忽略了新闻隐式信息是新闻的重要组成部分,对新闻表示的完整性和准