论文部分内容阅读
新型生物农药申嗪霉素,其有效成分为吩嗪-1-羧酸(phenazine-1-carboxylic acid, PCA),对甜椒疫病和西瓜枯萎病等有较好的防治效果。该农药具有广谱、低毒、低残留、与环境相容性好的特点,具有广阔的应用前景。但在生物防治过程中发现,PCA在大田中易被降解,影响其防治效果和推广使用。因此研究PCA的降解机理,并寻求延长防治效果的有效方式,是十分必要的。本论文主要研究PCA的光降解原理,并探究延长PCA防治效果的方式。本文首次研究了溶剂、光源种类、光照强度、溶液pH以及溶液中氧化剂对PCA光照稳定性的影响。并对PCA在可见光条件下的降解过程作了定量数学分析,发现PCA在水相中的降解符合一级动力学模型。在甲醇、丙酮、乙酸乙酯、pH 5.0缓冲液中的PCA经过可见光光照后,均发生降解,并且不同溶剂中的降解产物不同。以水作为溶剂时,紫外、太阳光和可见光光照后均能促使PCA发生降解,且降解产物的色谱保留时间一致。并且水溶液pH值越低,PCA越不稳定,PCA在pH 6.8溶液中的降解半衰期为37.6天,而当pH为5.0时,PCA的降解半衰期缩短至2.2天。在避光和可见光光照条件下,双氧水浓度越高,降解速率越快,且光照能明显加速PCA的降解速率。通过氮气除去溶液中的一定量的氧气后,PCA的光降解半衰期从原来的2.22天延长至4.30天。因此,为了提高PCA的稳定性,PCA更宜保存在避光、中性或碱性的环境中,且避免接触氧化性物质。HPLC检测发现PCA光降解后有两种新的降解产物出现,LC-MS和MSMS结果显示分子量分别为240和196。通过与纯品1-羟基吩嗪的HPLC和LC-MS的对照,确认物质B为1-羟基吩嗪,而物质A在1H和物质B结构的基础上,推测为6-羟基PCA或9-羟基PCA。因此,PCA降解反应的第一步为吩嗪环上的氧化,形成羟基PCA,并随后发生较彻底的裂解反应形成小分子。在应用方法的研究方面,借鉴了应用于医药的纳米材料,以改良农药剂型本身为切入点,从农药缓释剂型角度出发,运用AMS和HOM法合成纳米介孔二氧化硅,并通过硝酸氧化改性了纳米活性炭。通过对各种纳米材料进行载药和缓释实验,最后发现改性纳米活性炭的载药量目前可达0.3g/g (PCA/活性炭),并且具有较好的持续缓释效果,经过9次连续洗脱后,PCA的缓释效率达到55.67%。该PCA-改性纳米活性炭制剂具有一定的抑菌效果,具备开发前景。本论文首次对新型农药PCA的光照稳定性进行了系统分析,初步推测出PCA在可见光下的两个降解产物,为提高PCA的生物防治效果打下了理论基础。并首次对PCA-改性纳米活性炭农药新剂型进行了探索,研究提高生物农药在田间应用效力的方式,为新型农药PCA的应用奠定良好基础。