【摘 要】
:
工具技术作为支撑高端精密装备发展的基础,很大程度上决定了装备发展水平。随着制造业发展对机械零部件加工精度等要求的日益提高,磨削在零件高效精密加工中的地位越来越突出,对磨削工具及其制备技术也提出了更高的要求,高强度低磨损的新型砂轮制备技术因此成为实现高效磨削的关键切入点之一。黏结、电镀和普通热源钎焊等方法作为cBN砂轮的常规制备技术,存在诸如磨粒与基体结合强度低、基体热变形大等缺陷,严重阻碍了砂轮的
【基金项目】
:
国家自然科学基金项目“面向窄深槽结构的风冷式单层 c BN 砂轮超高速磨削冷却换热机理的研究”(51575375); 山西省自然科学基金项目“硬度梯度连续的高速钢涂层刀具激光分层熔覆制备机理及其切削性能研究”(201801D121174); 山西省研究生教育创新项目(2017BY044);
论文部分内容阅读
工具技术作为支撑高端精密装备发展的基础,很大程度上决定了装备发展水平。随着制造业发展对机械零部件加工精度等要求的日益提高,磨削在零件高效精密加工中的地位越来越突出,对磨削工具及其制备技术也提出了更高的要求,高强度低磨损的新型砂轮制备技术因此成为实现高效磨削的关键切入点之一。黏结、电镀和普通热源钎焊等方法作为cBN砂轮的常规制备技术,存在诸如磨粒与基体结合强度低、基体热变形大等缺陷,严重阻碍了砂轮的加工效率和使用寿命,甚至存在一定的安全性问题。围绕cBN砂轮制备及加工过程中存在的上述问题,结合制造业快速、高效、绿色等发展要求,本文利用激光钎焊工艺操作简便、效率高、污染低等优势,采用活性Zr改性AgCuTi钎料进行钎焊cBN砂轮制备及其加工性能的研究工作,完成的主要工作如下:1)钎料组分改性的研究。将活性成分Zr添加到钎焊连接cBN的钎料中,以Ag-Cu-Ti-Zr多元组分的热力学相容性理论为依据,采用机械合金化方法制备了AgCu28-4.5Ti和AgCu28-4.5Ti-4Zr两种活性钎料。研究表明,活性成分Zr有利于细化钎料、减少Cu-Ti硬脆性化合物生成、缩小钎料熔化区间、促进钎焊层与基体过渡区元素的梯度分布。制备的AgCu28-4.5Ti-4Zr钎料对cBN磨粒和基体的润湿性良好、连接强度高。2)激光钎焊工艺参数优化研究。通过单因素试验对激光钎焊电流、脉宽、频率、扫描速度和离焦量等工艺参数进行分析,确定了激光功率、扫描速度是影响钎焊质量的主要因素。有限元模拟结果表明,激光功率增大到一定值后,焊接温度增量会逐步增大;激光扫描速度较低时,扫描速度的增加对焊接温度的影响较大。不同激光功率与扫描速度下单节点热循环曲线表明,激光作用下的焊接初始节点温度与终止节点温度存在明显差异,通过调整合适的激光参数可获得相对稳定的温度场。基于单因素实验和有限元模拟结果,设计正交试验对激光参数进一步分析,获得了优化的激光钎焊工艺参数。3)钎料润湿性能的研究。建立了表征钎料润湿性的理论模型,推导了钎料润湿角与其铺展半径、润湿高度之间的关系。进行了AgCu28-4.5Ti和AgCu28-4.5Ti-4Zr活性钎料激光钎焊润湿角测量试验,同时通过测量钎焊层宽度和高度,根据钎料润湿性理论模型求解了钎料的润湿角。根据理论模型计算结果与测量结果对比的一致性,证明了建立的钎料润湿性理论模型的适用性。该模型可实现激光钎焊过程中钎料润湿性能的定量评价。4)AgCu28-4.5Ti-4Zr活性钎料钎焊cBN连接机理的研究。对钎焊cBN结合界面分析表明,在钎焊层中磨粒与钎料界面生成了Zr B2、Ti B、Ti B2、Ti N等化合物,形成内层结构,新生金属间化合物Ag Zr2、Cu10Zr7等形成外层结构。结果表明,采用合理工艺方法,利用激光作为热源,可实现cBN砂轮的制作。cBN磨粒在摩擦磨损过程中主要表现为脆性压溃或微裂纹扩展开裂,钎焊层对磨粒具有良好的把持性能。5)激光钎焊cBN砂轮性能的研究。利用自制机械合金化钎料并采用优化的激光工艺参数研制了新型钎焊cBN砂轮,从磨粒分布浓度、磨粒横向均匀性及纵向等高性等方面对cBN试样地貌进行了量化评价,验证了技术可行性。磨削试验后对磨粒磨损状态分析结果表明,磨粒经历了完整棱角、磨耗磨损及轻微磨损等阶段,cBN与45钢基体间实现了可靠连接。
其他文献
分布式光纤传感技术为基础设施的结构健康监测提供了一种高效、经济的解决方案。该技术可应用于长距离的振动检测领域,如石化管道、电力线缆、铁路轨道、周界安防和地震检测等。近年来,相位敏感光时域反射计(Φ-OTDR)作为分布式光纤传感技术的典型代表,以其结构简单、灵敏度高、响应速度快、铺设方案简单等优点,越来越受到人们的重视。Φ-OTDR系统借助对外界振动极为敏感的激光相位信息来实现振动事件的感知,但环境
Ti/Al层状复合板兼有Ti、Al金属的优异性能,可实现Ti、Al异种金属优势互补,其冲压成形制件在汽车、船舶、航空航天、电子、医疗等领域具有广泛应用前景。然而复杂零部件的制备对复合板的力学性能和成形性能有极其严苛的要求。目前,对Ti/Al复合板冲压成形性能的研究非常有限。且不同于单一板材,复合板中层界面的存在及其结构和性质演变对其成形行为具有很大的影响,而这亟待深入研究。本文采用热压、轧制及退火
干热岩作为优质的、储量巨大的、暂未开发的地热资源,其高效开发利用已成为世界范围内的研究热点。利用深部干热岩体天然裂缝系统构建储留层会大幅简化储留层施工流程,降低施工难度和开发成本,提高水-岩热交换的效率。因此本文提出利用裂缝充填花岗岩体自身结构特性建造干热岩储留层并以此开采干热岩地热能的新研究方向。针对这一崭新课题,本文进行了一系列研究,并得出如下结论:(1)通过现场勘察研究深部干热岩体天然裂缝系
随着信息技术的跨越式发展,集成电路制造技术的不断改进,传统的硅基电子器件成为了后摩尔时期集成电路发展的重大障碍,研究和开发基于新材料、新结构和新工艺的器件已迫在眉睫。自旋电子学是一门近几年结合微电子学、磁学和材料科学提出的具有革命性的交叉学科,其旨在利用电子的自旋属性来实现信息存储、传递和处理等功能,近年来已逐渐成为最活跃的科学前沿。自旋电子器件具有集成度高、运行速度快,低能耗等传统半导体电子器件
混沌光保密通信是将混沌激光信号作为掩藏信息的载波对信息加密,再利用混沌同步进行信息解调的一种新型保密通信技术,它因具有硬件加密、传输速率高、长距离以及与现有光纤网络兼容等优点而受到广泛关注。其安全性依赖于混沌收发机的参数匹配。硬件参数均为密钥参数,参数的安全性结合空间的大小决定了混沌保密的安全程度。镜面反馈半导体激光器由于结构简单和易于集成的优点被广泛用作混沌收发机。然而,基于镜面反馈半导体激光器
不久前,科学家终于见到"海绵宝宝"和"派大星""同框"了!但是它们的会面地点不是在"海绵宝宝"太平洋底比奇堡的家,而是在北大西洋1 885米深的洋底。2021年7月27日,在北大西洋的海山附近,遥控无人潜水器拍摄到了"真人版"的"海绵宝宝"和"派大星"。画面中"海绵宝宝"身体呈方形,颜色金黄,有明显的出水孔,与卡通形象十分相像。有趣的是,这一次"海绵宝宝"的好朋友"派大星"也入镜啦。它们的体
《全日制义务教育语文课程标准》强调:阅读是学生的个性化行为,不应以教师的分析来代替学生的阅读实践。应让学生在主动积极的思维和情感活动中,加深理解和体验,有所感悟和思考,受到情感熏陶,获得思想启迪,享受审美乐趣。要珍视学生独特的感受、体验和理解。因此,在阅读教学中,教师需要从课内到课外实现阅读文本的综合融入,以此使学生能在丰富的素材中逐渐培养阅读习惯,实现内外双修的育人目标。
本研究通过对表现出丛枝和花变叶症状的芝麻感病植株总DNA进行植原体16S rRNA和rp基因的PCR扩增、克隆、测序及序列分析,明确了两种病株的病原均为植原体,并将其命名为云南元谋芝麻丛枝植原体(SEWB-YNym)和云南元谋芝麻花变叶植原体(SEP-YNym)。两个株系的16S rRNA基因片段长度均为1 248 bp,并且碱基序列完全一致。通过与其他地区报道的芝麻植原体株系16S rRNA基因
齿轮作为重要的机械基础件,被大量应用于机床、煤炭、航天等工业领域。在制造技术日新月异的今天,对齿轮性能的要求也在逐渐发生变化,齿轮需要同时满足高精度、小型化,高承载能力,高齿面硬度等技术指标。为满足以上要求,可以提高齿轮齿面硬度的硬齿面技术被应用于齿轮加工过程中,因此齿轮制造工艺的发展主要集中在两方面,采用硬齿面齿轮加工新技术和提高齿轮加工效率。但目前,国内的硬齿面加工技术在上述两方面还与国外先进
地热能作为一种清洁、绿色、可再生能源越来越受到各国研究学者的关注与重视。在地热能开采的过程中,无论是井筒的钻进,还是开采过程中水在人工储留层中的冷热交换,都会涉及到高温岩体的冷热交替作用,而在冷热交替的作用下岩体必然产生损伤劣化进而引起其物理力学性质的变化,一方面会对高温岩体钻进过程中井筒的稳定性产生不利的影响,另一方面对热储层裂隙网络通道的进一步扩展及新裂隙的产生起到了有利的促进作用。本文针对地