【摘 要】
:
高氯酸铵(AP)作为一种氧化剂被广泛应用于固体推进剂中,其吸湿性和热分解性能直接影响推进剂的热稳定性及燃烧性能。为了改善AP的防吸湿性,同时提高AP的热分解性能,本文采用聚多巴胺(PDA)作为一种界面材料包覆于AP,然后利用PDA优异的粘附性能,分别用非含能的纳米金属氧化物和含能的纳米金属配合物对其进行二次包覆,制备出AP/PDA/纳米催化剂的复合材料。主要研究内容如下:(1)AP颗粒的粒径调控。
论文部分内容阅读
高氯酸铵(AP)作为一种氧化剂被广泛应用于固体推进剂中,其吸湿性和热分解性能直接影响推进剂的热稳定性及燃烧性能。为了改善AP的防吸湿性,同时提高AP的热分解性能,本文采用聚多巴胺(PDA)作为一种界面材料包覆于AP,然后利用PDA优异的粘附性能,分别用非含能的纳米金属氧化物和含能的纳米金属配合物对其进行二次包覆,制备出AP/PDA/纳米催化剂的复合材料。主要研究内容如下:(1)AP颗粒的粒径调控。基于重结晶原理,探索表面活性剂、温度对AP结晶析出过程的影响,制备了不同粒径的AP颗粒。通过SEM、光学显微镜、XRD对重结晶后的AP进行形貌和结构的表征,及热性能测试。结果发现利用重结晶后的AP晶型没有发生变化,使用表面活性后AP的粒度降低,其中添加十二烷基苯磺酸钠(SDBS)重结晶后的AP粒度范围在3.43~34.67μm,添加表面活性剂后其AP的放热量有一定提高。(2)AP/PDA的制备及表征。利用原位包覆法制备出不同PDA含量的AP/PDA,并用SEM、XRD、Raman、离子色谱测试表征对其形貌和结构的表征,结果显示,随着多巴胺(DA)质量浓度的增加,PDA的含量逐级增加,通过吸湿性测试,当DA在0.2 g/L时,AP/PDA中PDA的含量为1.33 wt%,吸湿率最低为0.19%。(3)AP/PDA/Fe2O3的制备及表征。用纳米Fe2O3与AP/PDA复合制备出AP/PDA/Fe2O3复合物,通过SEM、EDS Mapping、XRD、XPS对材料的形貌、结构和组成进行表征以及吸湿性、接触角和热性能测试,结果显示Fe2O3能均匀附着在AP/PDA的表面,AP/PDA/Fe2O3吸湿率降为0.16%,接触角为41.8o,其疏水性较AP得到了显著的提升。AP/PDA/Fe2O3较AP其高温分解峰提前了48.5℃,放热量提高了450.4 J/g,表观活化能降低至61.36 k J/mol,降低了约20%。(4)AP/PDA/Ni(Hbta)2和AP/PDA/Co(Hbta)2复合物及表征。用纳米双四唑胺金属配合物Ni(Hbta)2,Co(Hbta)2与AP/PDA复合制备的到AP/PDA/Ni(Hbta)2和AP/PDA/Co(Hbta)2。通过SEM、EDS Mapping、XRD、XPS对材料的形貌、结构和组成进行表征以及吸湿性、接触角和热性能测试。结果显示,金属配合物能能均匀附着在AP/PDA的表面,AP/PDA/Ni(Hbta)2和AP/PDA/Co(Hbta)2复合物吸湿率降为0.12%和0.14%,接触角为45.8°和40.6°。较AP相比,AP/PDA/Ni(Hbta)2和AP/PDA/Co(Hbta)2的高温分解峰温提前了64.4℃和118.1℃,放热量分别提高至1388.4 J/g和1824.6 J/g。本文在水溶液中以原位包覆的方式制备出AP/PDA,利用PDA良好的粘附性,成功制备出AP/PDA/纳米催化剂复合物。较AP具有优异的防吸湿性和良好的热性能,有望应用于固体推进剂中。
其他文献
直接醇类燃料电池(DAFC)因其效率高、燃料范围广、对环境影响小,甚至没有影响等优点广泛应用于便携电子设备、公共交通以及发电站等方面。以甲醇燃料电池为例,阳极以甲醇作为燃料,发生燃料氧化反应,阴极以氧气为氧化剂,发生氧气还原反应。在燃料电池电极反应中起重要作用的是催化层,因此制备高活性、高稳定的催化剂至关重要。碳气凝胶作为一种多孔、轻质的块体碳材料,因其比表面积较高,孔结构丰富、导电率较高、耐酸抗
人类对能源需求的日益增长使得核能得到了迅速的发展,但是伴随而来的核污染严重影响到了生态环境以及人类的生命安全。其中以铀(U(Ⅵ))为主的放射性核污染物往往存在于受污染的地下水中,造成了很严重的环境问题。因此,高效地去除水中的U(Ⅵ)成为了当今热点。在常用到的含U(Ⅵ)废水的处理技术中,吸附法因其操作简单、具有一定经济效益,且吸附剂种类多、来源广泛等优势而被广泛应用。在已有的吸附剂材料中,氧化镁具有
N5负离子含能材料已成为含能材料研究的热点之一。作为新型N5负离子含能材料的基础原料,五唑金属盐的合成还存在分离纯化困难、成本高、产率低、难以放大等问题,有待深入研究。本论文对五唑金属盐合成工艺优化和放大,五唑金属盐分离纯化方法,以及五唑非金属盐合成等进行了研究。(1)五唑钠(4)合成工艺优化及放大以2,6-二甲基苯酚(1)为原料,通过偶氮或亚硝基还原法对4-氨-2,6-二甲基基苯酚(2)进行了合
由于Al粉具有较高的能量密度,被广泛用于复合含能材料体系中。然而,Al颗粒表面存在的完整钝化层(Al2O3)会降低其反应性,并使内部的Al核难以完全反应。为了提升铝的反应性,本论文提出了一种基于液态金属“一步”改性微米铝粉方法,用于制备改性铝(GLM-Al)。旨在通过破坏铝颗粒表面完整的Al2O3壳,从而促使铝核快速释放并参与反应。本文的研究内容如下:1)液态金属改性铝的制备及其热性能研究以25μ
水汽分子无时无刻不在侵蚀破坏着周围的建筑、金属材料、电极元件等,从而导致建筑开裂变形、金属锈蚀脆化、电器元件短路故障等。水汽分子对材料的腐蚀破坏已经造成了相当大的经济损伤,对于基体的水汽防护处理已成为建筑、包装、电子甚至国防等领域亟待解决的问题。聚脲作为一种新型的防水防腐涂料,由于其优异的理化性能和简便的制备工艺,已经成为最具应用潜力的防护涂料。然而,相较于其它的防护涂料,聚脲涂层的水汽阻隔性并不
核能是一种零碳排放的新型能源形式,其开发和利用都将无可避免地产生高放废物。然而,高放废物具有放射性强、生物毒性大等特点,因此,必须得到安全有效的固化处理。玻璃固化是目前唯一实现工程化应用的高放废物固化方式,但其存在对高放废物包容量低的问题。随着核事业的发展,未来产生的高放废物将越来越多,低包容量的玻璃固化方式无法满足高放废物的处理需求,因此,有必要开发对高放废物具有更高包容量的固化基材。本文针对富
目前可穿戴辐射防护制品主要是橡胶材质,普遍存在射线防护功能单一、笨重及透气透湿性差等问题。随着核技术在能源、国防及医学领域的快速发展与应用,涉核人员会更多、涉核活动会更为频繁,迫切需求开发出辐射防护安全和穿戴舒适的辐射防护制品。聚酯纤维加工成的纺织面料具有透气透湿性,填充具有辐射防护功能的无机粒子的聚酯复合材料能潜在地实现辐射防护制品的辐射防护安全和穿戴舒适。因此,高填充高分子复合材料中填料尺寸、
硝酸酯类化合物作为一种能源材料被广泛应用于固体推进剂,但其分子结构中含有键能较低的硝酸酯键(O-NO2),易在高温、水分、酸性等条件下发生分解反应产生大量氮氧酸性气体(NOX)和氮氧自由基(NO·)。这些氮氧化物又催化硝酸酯类化合物的分解,缩短固体推进剂服役寿命,可导致燃烧甚至爆炸,给我国军事领域的发展带来不可估量损失。为提高固体推进剂的热安定性,科学家们设计了一系列苯胺类、苯脲类及苯酚类安定剂。
高氯酸铵(AP)在固体推进剂中扮演着氧化剂和能量释放的重要角色,其燃烧性能直接影响固体推进剂整体的性能。目前,改善AP燃烧性能最有效的方法是引入燃烧催化剂。在众多催化剂中,含能配合物是一类特殊的催化剂,它具有出色的能量特性、稳定性以及催化特性,因此受到有关学者的广泛关注。含能配合物的组成通常包括含能配体和金属中心,而在众多的配体中,富氮唑类配体优势显著,具有高生成焓、高能量、出色的氧平衡、热稳定性
随着核技术的不断发展,涉核场景也越来越多,为了保障涉核人员及环境安全,针对放射性污染的控制与清除显得尤为重要。放射性去污的方法不在少数,其中可剥离去污技术具备施工较为简便、去污率高、产生废物较易后处理等优势,得到了广泛的应用,而可剥离去污剂也成为了研究热点。传统有机溶剂型可剥离涂料在生产和使用过程中含有大量的挥发性有机化合物(VOCs),所以环境友好型去污材料受到越来越多的重视,具有环境友好特性的