论文部分内容阅读
煤与瓦斯突出是煤矿瓦斯典型动力灾害形式之一,煤与瓦斯突出事故的发生会给煤矿企业造成巨大的经济损失和不良的社会影响。为了尽早的发现煤与瓦斯突出风险,及时地采取科学的防突措施,本文借鉴态势感知的基本思想,利用安全风险管理、压缩感知、模式识别、信息融合、机器学习等技术理论,采用现场调研、理论分析、数值模拟和现场试验相结合的研究方法,从煤与瓦斯突出态势觉察、态势理解和态势预测等几个方面开展煤与瓦斯突出态势感知的深入研究。研究内容及成果为构建煤与瓦斯突出态势感知体系奠定理论基础,为瓦斯动力灾害的科学治理提供辅助决策。在分析煤与瓦斯突出过程及影响因素的基础上,通过理论分析、现场数据分析和数值模拟实验,分析了煤与瓦斯突出过程中,瓦斯涌出规律以及煤岩体破裂声发射的演化特征。结果表明,瓦斯涌出量、声发射信号都具有明显的突出前兆特征。提出了煤与瓦斯突出态势感知的基本任务,构建了局部态势感知和全局态势感知相融合的煤与瓦斯突出态势感知模型。提出了煤与瓦斯突出态势要素的选取应满足科学性、前兆性、实时性、可操作性、全面性和敏感性等原则。以赵各庄矿为例,选取瓦斯涌出及声发射实时监测信息作为主要的煤与瓦斯突出态势要素,将钻屑量、钻屑解吸指标、瓦斯压力、瓦斯含量等作为辅助态势要素,并对突出态势要素选取的可行性进行了分析论证。提出了基于压缩感知的煤与瓦斯突出态势要素有效信息提取方法。以不完全瓦斯涌出时间序列为研究对象,利用压缩感知实现了对缺失率小于30%的瓦斯涌出时间序列的修复。针对噪声背景下的煤岩体声发射信号提取问题,将压缩感知与小波去噪方法相结合,实现了噪声信号和有效煤岩体声发射信号的分离。研究煤与瓦斯突出灾变特征提取方法。提出了基于五点三次平滑处理与非线性分段相结合的瓦斯涌出时间序列趋势特征提取方法。将瓦斯涌出时间序列均值、趋势斜率、波动率等作为瓦斯涌出异常时间序列辨识指标,利用动态模式匹配距离结合层次聚类,实现了对包含突出灾变在内的瓦斯涌出异常时间序列的识别。研究了煤与瓦斯突出过程中声发射信号时域、频域和时频域特征,利用小波包能量谱和小波包能量熵提取声发射信号能量特征。结果表明,突出过程中,声发射信号呈现低频高幅值变化,能量向优势频段集中,小波包能量熵值降低等特征,提出将声发射信号能量熵值变化率作为煤与瓦斯突出前兆辨识指标。构建了煤与瓦斯突出态势评估指标体系,建立了基于信息融合的煤与瓦斯突出态势评估模型。为解决随机性、模糊性等不确定性因素对煤与瓦斯突出态势评估的影响,提出了基于云模型-改进证据理论的煤与瓦斯突出态势评估方法,利用云模型构建证据体的mass函数,采用组合加权的证据理论降低证据间冲突程度,以提高煤与瓦斯突出态势评估的准确性。提出基于机器学习的煤与瓦斯突出态势预测方法。利用天牛群算法(Beetle Swarm Optimization,BSO)优化长短期记忆网络(Long short-term memory,LSTM)的超参数组合,建立了基于BSO-LSTM的瓦斯浓度预测模型。分析掘进工作面瓦斯浓度时空相关性,从时空角度优化预测模型输入。结果表明,基于时空耦合的BSO-LSTM的瓦斯浓度预测模型预测精度较高,结合云模型-改进证据理论对瓦斯浓度预测结果进行基于瓦斯涌出监测信息的突出态势局部预测。就煤与瓦斯突出态势全局预测而言,将态势评估结果量化为态势值,建立基于混沌免疫粒子群(Chaos Immune Particle Swarm Optimization,CIPSO)优化的广义回归网络(Generalized Regression Neural Network,GRNN)的煤与瓦斯突出态势值预测模型,实现了煤与瓦斯突出全局态势的短期预测。工程测试结果表明,煤与瓦斯突出态势感知方法能够准确地感知掘进工作面所面临的煤与瓦斯突出危险威胁,采用瓦斯压力、瓦斯含量、钻屑量等指标验证了利用瓦斯涌出、声发射等实时监测信息感知掘进工作面煤与瓦斯突出态势的结果,进一步说明了煤与瓦斯突出态势感知方法可以提高煤矿防治煤与瓦斯突出灾害的能力,保障矿井安全生产。该论文有图91幅,表29个,参考文献188篇。