论文部分内容阅读
在自由空间进行量子通信,使用空间激光信道传递量子态信息,激光束散角较小,需要捕获、跟踪、瞄准(Acquisition,Tracking and Pointing,简称ATP)系统来建立和保持通信链路。空间量子通信发展向天地一体化网络迈进,发展高轨道量子卫星作为通信中继将是必由之路,高轨卫星对地超远的链路距离对ATP系统的跟踪精度提出了更高的要求。基于低轨量子卫星“墨子号”的ATP技术基础,从机理上进行系统分析和工程实践优化,是发展更高精度ATP系统切实可行的方案之一。本论文以量子通信的空间ATP系统为研究对象,研究超高跟踪精度的ATP系统需要进一步突破的关键技术,复合轴ATP系统的精度由精跟踪系统决定,所以精跟踪系统成为了本文的研究重点。论文主要工作包括:介绍了ATP系统的工作原理,包括工作流程、系统构成和瞄准方案,分析了系统的关键参数耦合关系,并对精跟踪系统进行了重点介绍;在对ATP系统进行瞄误差分析的基础上,提出了基于衍射光斑采样的探测体制,并对精跟踪系统进行光学参数优化;基于zernike多项式推导了离轴光学系统和同轴光学系统的像差转换关系,仿真分析了光学像差对离轴光学系统接收光轴和发射光轴的影响;分析了面阵探测器的非理想特性因素,仿真分析了各个因素对光斑定位的影响,并实施了探测器非均匀性校正;给出精跟踪控制系统的基础上,综合仿真分析和实验测试,探究控制分辨率对跟踪精度的影响。论文的主要创新点有:1)研究了衍射斑采样的探测体制。分析了波长、系统焦距、望远镜口径、探测器有效像元尺寸等对衍射斑定位的综合影响,提出了精密位置探测必须满足的空间采样关系。在衍射采样的探测误差空域和频域分析基础上,对精跟踪系统进行了光学系统参数优化,实验结果表明,当满足空间采样关系时,精跟踪精度从0.44?rad提高到0.12?rad。2)研究了光学系统像差对接收与发射光轴偏差的影响。基于zernike多项式的像差拟合,分析了光学系统各级像差对接收光轴和发射光轴的影响。数值仿真结果表明,为了实现优于0.1?rad的收发光轴配准,同轴光学系统像质需要达到?/30 RMS,离轴光学系统像质需达到?/100 RMS。3)研究了探测器非理想特性对光斑定位的影响。建立数理模型分析不同探测器随机噪声、填充率等对光斑定位精度的影响,得到不同填充率下的最优光斑半径;分析了探测器条状噪声对光斑位置定位的影响,仿真和实验结果表明,探测器条状噪声导致沿噪声延伸方向的光斑定位偏差大于其正交方向。对探测器的响应非均匀性进行校正分析,实验结果表明,非均匀性校正后光斑定位最大偏差0.08pixel收敛到0.05pixel以内。4)研究了系统控制分辨率对跟踪精度的影响。分析了不同控制分辨率下精跟踪系统的干扰抑制能力与跟踪精度并进行了实验验证。实验结果表明,当使用16bit量化的DAC时,相比于12bit量化结果,跟踪精度从0.5016?rad提高到了0.4128?rad。频谱分析表明,若要进一步提高跟踪精度,需要进一步增大系统的干扰抑制带宽。理论及实验结果表明,采取满足空间采样关系的光学系统设计,光学系统像质控制在同轴优于波长1/30?RMS(离轴优于波长1/100?RMS),对探测器各像元响应进行非均匀性校正,单像元瞬时视场小于1?rad,并将跟踪控制分辨率提高至16位量化,可以将系统的跟瞄精度从目前0.5?rad量级提高到0.1?rad以下。