论文部分内容阅读
随着工业化、城市化水平的不断提高,能源消耗、交通运输和和工业生产等排放的多环芳烃(PAHs)的量也不断增加,导致土壤PAHs超标的现象普遍存在。以过硫酸盐(S2O82-)为主要氧化剂的化学修复技术对于处理PAHs污染工业土壤有较好的效果。但过硫酸盐反应速率较快且无选择性,容易造成药剂浪费和二次污染。因此,利用油相相分离法制备以过硫酸钾为核心的微胶囊缓释材料,以提高过硫酸盐对于有机污染土壤的修复效率。本文研究了硫酸亚铁活化过硫酸钾微胶囊修复PAHs污染土壤,主要内容分为以下4个部分:(1)过硫酸钾微胶囊的制备、表征及效果验证;(2)过硫酸钾微胶囊对PAHs污染土壤的修复效果和机理研究;(3)土壤组分对过硫酸钾微胶囊降解PAHs的影响;(4)过硫酸钾微胶囊修复PAHs污染土壤的环境风险。主要研究结论如下:(1)采用油相相分离法制备的过硫酸钾微胶囊的包裹性能及缓释性能良好,并未对过硫酸钾的活性组分产生影响。当微胶囊芯材/壁材比例为1:2(w/w)、硫酸亚铁/微胶囊比例为1:10(w/w)时,过硫酸钾微胶囊的最优配比,并以活性艳红X-3B为代表性污染物进行了验证。当反应时间为72 h时,活性艳红X-3B的降解率达96%。(2)利用制备的过硫酸钾微胶囊修复老化PAHs污染土壤并与去离子水中PAHs反应进行对比分析。结果表明:土壤介质中,反应时间达到72h时,PAHs的总降解率达到53.6%,其中低环PAHs(2~3环)的降解率达到88.1%,高环(4~6环)降解率达到48.7%。去离子水介质中,反应72h时,PAHs总降解率为95.4%,低环和高环的降解率分别为96.6%和95.1%,均高于土壤介质中PAHs的降解率。这可能是土壤中存在的还原性物质、矿物组分和有机质等降低了土壤中PAHs的整体降解率。自由基探针实验表明,过硫酸钾经Fe2+活化后产生SO4-·和·OH等自由基,这些强氧化性的基团与PAHs反应从而将其降解。过硫酸钾的缓慢释放也导致PAHs降解率的不断提高。(3)土壤中天然矿物、有机质与无机阴离子等因素对过硫酸钾微胶囊修复PAHs污染土壤的影响研究表明:土壤中存在的天然矿物可以释放出Fe2+,与过硫酸钾结合产生SO4-·,提高PAHs的降解率;体系中有机质的含量越高,消耗的·OH和SO4-·数量越多,对PAHs的抑制更加明显;当体系中Cl-存在时,Cl-能与SO4-·和·OH反应生成Cl·,氯自由基之间相互反应生成氯气Cl2和Cl-,生成的Cl2和H2O结合生成次氯酸,促进了PAHs的降解;当HCO3-、CO32-和NO3-存在时,使反应体系中的主要活性物种SO4-·发生电子转移,生成了活性较低的自由基,抑制了PAHs的降解。(4)过硫酸钾微胶囊修复PAHs污染土壤后的环境风险研究表明:经微胶囊处理后的土壤中,Cr的浓度有所下降,比未加入微胶囊时的浓度降低了8.5mg/kg;As与Pb的浓度仅有略微变化,反应前后差异不大。未经微胶囊处理的细菌数量为6×104cfu/g,经过过硫酸钾微胶囊处理后,当反应12h时,细菌数量有明显的恢复,并且数量有所上升,反应72h细菌数量达到16×104cfu/g。经微胶囊处理后的土壤植物毒性随着反应时间的不断延长逐渐减小,反应72h时,黑麦草种子的发芽率为97.5%,较未经过过硫酸钾微胶囊处理的污染土壤提高了55%。因此,过硫酸钾微胶囊修复技术对土壤环境的风险较小,具有广阔的应用前景。