鲁棒优化方法在供应链柔性合同RSFC问题中的应用与研究

来源 :河南大学 | 被引量 : 0次 | 上传用户:zhangduanhua870505
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
鲁棒优化(RO)作为数学规划的一个新分支最近才发展起来,它是解决不确定规划问题的一种强有力工具。由于测量误差或模型本身的缺陷,或者决策阶段缺乏信息等原因,实际中许多优化问题的数据是受到干扰的或是不确定的,并且概率分布也无法预知。鲁棒优化通过“集合”形式描述数据的不确定性(而不是概率分布),使得约束条件在不确定数据取值于已知集合中所有可能值的情况下都满足,并以此建立最坏情况下最优化目标函数的鲁棒对应模型(RC),从而得到问题的鲁棒最优解。不同的“集合”形式得到不同类型的鲁棒对应模型,其复杂程度也不相同,但对同一个问题使用不同的不确定集合对鲁棒最优解和目标值有什么影响,它们之间存在什么联系,本文将对此进行初步的研究。 另一方面,供应链中需求信息的多变和价格波动的频繁造成供应商和零售商诸多决策问题的困难,所以本文选取供应链管理中零售商-供应商柔性合同RSFC问题为应用背景,从鲁棒优化理论的两种鲁棒模型Ben-Tal & Nemirovski鲁棒模型和Bertsimas&Sim鲁棒模型入手,以不确定线性规划为研究对象,研究两种鲁棒模型的本质区别和内在联系。通过对两种模型中保守度参数的选取,给出两种模型在一定条件下存在相同最优解的必要条件和充分条件,并且结论是“逐条”的,即对每条约束可以独立使用而互不影响。 根据上述性质建立混合鲁棒模型,并通过RSFC问题的算例实验分析说明保守度的选取对RSFC模型决策的影响以及为此所付出的鲁棒代价,以及混合模型的可行性和有效性。 本文的主要贡献如下: (1)对使用单一保守度的Ben-Tal & Nemirovski鲁棒模型进行局部调整,每条含有不确定数据的约束引入不同的保守度,在不影响约束违反概率的情况下使得模型的保守度降低,从而改进了目标最优值。 (2)研究最优解相同的情况下两种模型保守度参数的选取问题,在一定假设下给出其充分条件和必要条件,并通过算例验证结论的正确性。 (3)建立价格和需求均不确定的RSFC问题的鲁棒对应模型,并利用(2)中结论和其“逐条”性质,建立同时使用两种不确定集合的混合型鲁棒模型。
其他文献
本文将在经典的离散时间风险模型的基础上讨论两个推广的离散时间风险模型.在第一个模式中,假设在每个不同时间段里收取的保费是相互独立且同分布的随机变量;在第二个模型中,假设在每个不同时间段里收取的保费服从一有限状态空间的马氏链.同时引入注资策略,保证公司永不破产.在这两个模型中,任意时间段里索赔发生的概率与对应时间段里收到的保费相关,我们考虑红利最优支付问题.通过对值函数进行变换,再利用压缩映射定理,
由于新医改的全面实施,底层县级的公立医院面临了很大的挑战。本文以医院的发展阶段划分,分析了县级公立医院在新医改背景下存在的短、中、长三个不同时期的目标。针对医院的
学位
随着经济发展水平的不断提高,房地产行业在我国也逐渐兴起并迅速发展起来,在国民经济中扮演着支柱性和先导性的重要角色,但同时也成为了我国宏观调控的主要对象之一。本文通