论文部分内容阅读
贝塞尔函数在波的传播、有势场和信号处理等领域都有广泛的应用。贝塞尔函数作为一类特殊函数,无法用初等函数来表示。之前的工作中,幂级数、渐近级数展开等数值方法对整数阶第一类贝塞尔函数的逼近效率不高,且在数值上不稳定。由于贝塞尔函数的广泛应用,如何提高数值逼近的计算效率和逼近精度,具有重要的学术意义。本文对贝塞尔函数进行如下研究:1.研究整数阶第一类贝塞尔函数的数值逼近。基于贝塞尔函数的近似周期性,对广义特征值版本的Prony方法进行扩展,首次应用三角函数(sine、cosine)形式的Prony-like方法进行数值逼近。通过在符号计算软件Maple中对函数进行数值实验,分析不同整数阶的第一类贝塞尔函数在不同自变量区间上的数值逼近,将Prony-like方法的实验结果与基于傅里叶级数的方法进行对比,发现Prony-like方法的逼近效果远优于基于傅里叶级数的方法。2.通过与其他数值方法比较,进一步凸显Prony-like方法在整数阶第一类贝塞尔函数逼近的优势。采用三角形式的Prony-like方法对不同阶和不同自变量区间上的函数进行逼近,并与幂级数和渐近级数展开方法作对比,得出Prony-like方法显著优于幂级数和渐近级数。3.对Prony-like方法加以改进,进一步提高了逼近效率和逼近精度:(1)采用切比雪夫零点替换Prony-like方法中的节点,避免了通过Hankel矩阵和广义特征值问题计算节点的复杂过程,在保证逼近精度的同时,大幅提高计算效率,节约了计算资源。(2)优化Prony-like方法中求解系数时的取样方法。采用间隔取样法求解系数,可以进一步提高逼近结果的精度。