论文部分内容阅读
当前,大数据、云计算、工业互联网等新一代信息技术飞速发展,为设备状态监测与故障诊断研究提供了新理论和新技术。随着新型信息技术和传统液压技术融合发展,基于工业互联网平台开发油动机状态监测与故障诊断系统具有重要的理论意义和实际价值。因此,本文以油动机液压系统为研究对象,以挖掘状态监测数据中隐藏的故障信息为目标,采用工业互联网平台技术打通了信号采集、边缘数据处理、端云之间数据传输、海量数据弹性存储、故障诊断建模分析等信息通道,为油动机液压系统的状态监测与故障诊断系统提供了新理论、新技术和新方法。首先,依据信息物理系统(Cyber-Physical Systems,CPS)理论,设计了油动机状态监测与故障诊断系统的CPS六层功能架构,涵盖了从数据采集到数据分析的各项功能需求。并选取WISE-PaaS工业互联网平台为载体,构建了基于工业互联网平台的油动机状态监测与故障诊断系统的功能实现架构。其次,将油动机液压系统划分为正常调节和快关缓冲两个工作状态,分别进行建模分析。并在AMESim仿真平台上对电液伺服阀喷嘴与阻尼孔堵塞、油动机液压缸内泄漏、电磁阀电磁性能退化等故障进行仿真模拟,以探究状态监测与故障诊断所需的故障敏感数据源,为工业互联网的数据接入提供理论指导。再次,针对油动机在正常调节状态下易发生的液压缸内泄漏故障,基于支持向量数据描述(Support Vector Data Description,SVDD)单值分类法,利用液压缸两腔压力状态监测时域信号的最小值和最大值两个特征值构建液压缸内泄漏故障诊断的新模型,为在工业互联网上实现油动机液压缸内泄漏故障诊断提供模型。然后,针对油动机快关缓冲系统中的核心控制元件——快关电磁阀电磁性能退化故障,利用电磁阀出口压力信号进行故障诊断,研究基于主成分分析(Principal Component Analysis,PCA)降维与极限梯度提升树(eXtreme Gradient Boosting,XGBoost)分类算法相融合的电磁阀电磁性能退化故障诊断的新算法,为在工业互联上实现快关电磁阀故障诊断提供算法。最后,在WISE-PaaS工业互联网平台上为油动机新型试验样机开发状态监测与故障诊断系统,研制从信号采集、边缘特征提取,云端数据分析等功能模块,为“工业互联网+油动机液压系统状态监测与故障诊断”研究提供具体解决方案。本文研究成果不仅完成了基于工业互联网平台开发油动机状态监测与故障诊断系统的具体研究任务。还探索了“工业互联网+液压”实现途径,为传统液压技术与工业互联网信息技术融合提供了应用范例。