基于分割对抗网络的超声甲状腺结节分割方法研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:fengniao1625
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
甲状腺结节作为内分泌系统的一种常见疾病,患病率高达32.4%,且有高达5%~10%转为恶性结节的概率,对人类身体健康构成严重威胁。近年来,医学影像技术飞速发展,临床检出率约为20%~70%,越来越多的小结节在超声诊断仪器下显现出来,这就意味着患者可以及时的发现和治疗,这对于患者疾病治愈率的提高意义重大。为了解决医生手工分割结节区域工作量大、耗费时间长、带有主观意念、漏诊误诊、标准不一等问题,基于超声图像的计算机辅助诊断技术在临床医学中迅速推广开来。近年来,人工智能技术在医学影像学方面有了深入地研究进展并逐渐成为行业热点,医学图像分割就是其中之一。因此,开发出健壮的超声甲状腺结节分割系统具有很重要的临床意义,本文基于分割对抗网络实现对超声甲状腺结节区域的分割。本研究深入分析了甲状腺结节分割的技术现状,以超声图像作为主要研究对象开展研究。(1)针对超声甲状腺图像分辨率低,对比度低,结节形状大小不一带来的分割准确率低、边缘信息缺失等问题,提出了基于联合上采样的超声甲状腺结节分割方法。该方法输入原始ROI图像,通过学习健康和不健康的甲状腺组织如灰度、边缘、形状、纹理等的内在特征,实现结节区域的分割。首先,使用多层卷积神经网络提取甲状腺结节特征。其次,设计使用了一种多扩张率卷积块对目标区域进行精准定位,在相同计算成本的前提下,融合不同采样系数下扩张卷积的上下文信息,捕捉更大范围的依赖关系。最后,使用跳跃连接将网络浅层特征和深层特征进行融合。实验结果表明,本研究方法获得了93.19%的像素准确率,dice系数值0.8558,jaccard距离值为0.0824,达到了不错的分割结果。(2)针对现有甲状腺结节分割网络模型普遍存在结节区域分割不准确的问题,往往会过分细化或粗化结节边缘信息。在需要定量计算结节大小时,过分割或欠分割现象在医生诊断过程中都是非常不利的。为获取更为鲁棒的模型,同时提升分割准确率。在基于联合上采样的超声甲状腺结节分割方法的研究基础上,本研究引入一种对抗训练,提出了一种基于条件分割对抗网络的超声甲状腺结节分割方法用以实现甲状腺结节区域更为准确的分割。本研究模型由分割器网络和判别器网络两个部分组成,其中分割器网络设计使用基于联合上采样的方法进行分割,通过网络学习提取结节深度和浅层特征信息,获得结节区域二值掩膜;判别器网络对比分割结果与金标准之间的差距对分割结果进行评估。通过多次对抗训练,实验结果表明,本研究分割网络模型像素精度达到95.31%,dice系数值为0.8994,jaccard距离值为0.0687,相较联合上采样的分割网络,性能有所提升,可以更加准确的对超声甲状腺结节区域进行分割,也为后续的研究提供了较为坚实的基础。
其他文献
河域边界线指的是河域中波动的水面与河滩的瞬时交界线,其位置信息的实时监测在河域自动化测流中起着十分重要的作用。现为实现河域测流平台在测流时对河域边界线的自动实时视觉识别与定位而可自动布置测流点,达到河域全自动化测流的目标。现针对河域边界线的实时视觉识别提出方法研究,接着对识别到的边界线进行坐标定位并应用于测流点布置。本课题针对水文站的实际测流工作需要,首先进行了视频监控系统的搭建,实现了研究对象的
近年来,我国的交通运输业成为了发展较快的行业之一,成为了构成国家经济中的一个核心部分。交通基础设备建设关联了社会中的各种环节,对城市以及国家的经济增长起着关键作用。全覆盖的建设高速网络,可连接部分人口较少的城市,提升居民出行便利性,支撑新型城镇化发展。据相关部门的规划,在十三五结束时,我国的道路可以行车的总公里数将实现15万公里的突破,至2020年,我国在城市建成区已经拥有超过每平方公里8公里的平
特殊场景常常面临样本不易获取的问题,由此造成该场景分类识别任务的样本缺乏。针对场景样本缺乏的问题,利用辅助域(或称源域)构建迁移学习模型,提高困难场景中样本分类准确度与性能是当前研究的热点与难点。以本地森林火灾预防为例,由于样本缺乏,对本地森林火灾图像检测较困难,近几年森林火灾频繁发生,使提高本地森林火灾图像检测准确率变得尤为重要。因此,解决本地森林火险多分辨图像分类识别问题并提高烟雾样本分类准确
随着医学领域的随访工作逐渐被重视,在医学图像处理领域,通过相关分析方法获吗取随访信息的工作也变得越来越重要。就肺癌筛查工作而言,在早期阶段的诊断过程中,医师常需要根据分级报告对当前CT的筛查结果进行评估并给出随访筛查的建议。而随着随访时间和随访次数的推移,医师对于随访类筛查结果的判断往往容易忽视时间信息及相关随访信息从而造成误诊和漏诊问题。同时,在肺癌的计算机辅助诊断方法中,大多肺结节分类模型并没
随着计算机技术的进步,尤其是深度学习技术的发展,数字图像处理和计算机视觉技术已经逐渐自成体系。图像的语义分割问题作为计算机视觉的基本任务,因其可被用于辅助其它计算机视觉任务的实现,同时也受到越来越多的关注。图像语义分割对图像进行逐像素的分类,为图像中所有像素点分配语义标签,从而实现从像素级别理解图像内容,在自动驾驶、物体检测和跟踪、人机交互、场景识别与理解等领域都有着广阔的应用前景。本文总结了语义
电子化在线教育是互联网与算机技术同教育方面的需求相结合的产物。近年大规模开放式在线课程学习平台得到了教育界人士的关注和大力推广。在基础设施条件良好的前提下,相比传统的教育形式,在线教育平台有着对用户的学习时间和学习地点友好、大规模授课成本更低、可以更顺畅地衔接各种电子化的或者多媒体教学资源以及在一些方面上可以更便捷地记录学习者的行为及反馈等优势。但在线教育平台由于其大规模性及线上性,在对学生的个性
雾计算作为物联网分布式应用的一种有效解决方案,与云计算相辅相成,共同促进了物联网的发展,云雾存储也成为了物联网设备存储数据的首选。然而对于存储在雾节点.或云服.务器上的数据,脱离了物联网设备的绝对控制,为了保证对数据的安全访问,密文策略属性基加密(Ciphertext-Pol.icy Attribute-Based Encryption,CP-ABE)技术可以在实现数据机密性的情况下满足数.据细粒
查询是数据库系统的主要负载,查询执行的效率决定数据库系统的性能。为查询选择合适的执行计划是提高数据库系统性能、最终提升应用系统性能的关键。目前查询优化器主要基于代价模型为查询选择执行计划,代价模型的建立通常依赖于数据库系统中的统计信息,统计信息的准确度受数据分布情况的影响。数据分布未知时,优化器提供的统计信息与真实情况存在较大偏差。对于并发查询,查询优化器通过配置并行度等参数为查询选择较优的执行计
工艺智能决策是制造业转型升级的关键条件。因此,本文以滚磨光整加工工艺为研究对象,在课题组已经建立的数据库平台上进行智能工艺决策系统的研究。目前在滚磨光整加工中,针对特定的零件特征及其加工要求,是根据专家经验进行大量试验来选择较为合适的工艺方案。由于零件种类繁多,且同一零件的加工要求也变化多样,针对新型复杂零件的工艺参数优选缺乏统一的工艺标准和有效的理论指导,不能满足快速发展的要求。为了能够有效利用
对大脑组织进行跨物种比较已经成为探索大脑进化水平的一种重要手段,由于在猴脑中可以实施一些人类大脑中无法实施的解剖学和生理学研究,猕猴已被广泛地用于理解人类大脑。Broca区主要负责语言信息的处理和话语的产生,与人类语言能力的发展密切相关。尽管从解剖学角度已将猕猴大脑的44和45区视为人脑Broca区的同源脑区,并将猕猴大脑的Broca45同源脑区近一步细分为了喙部(rostral areas,45