超长线阵红外焦平面探测器集成化处理电路设计及应用研究

来源 :中国科学院大学(中国科学院上海技术物理研究所) | 被引量 : 0次 | 上传用户:bianmlu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高分辨率红外遥感是近年来的研究热点,也是空间遥感领域用来探测和识别目标的重要手段。越来越多的应用机构迫切需要同时具有高地面分辨率、高辐射灵敏度和短重访周期的红外遥感仪器,宽视场的红外推扫成像相机成为必然选择。除了要求具有大口径的光学系统外,还需大规模、长线阵的红外焦平面探测器相配合,从而也要有同等规模的信息获取与处理电路与之配套,这势必造成系统资源需求庞大,与空间遥感仪器的资源限制形成了矛盾。为了解决这一矛盾,以研究一款采用超大规模红外焦平面探测器的红外相机为依托,对信息获取与处理电路进行设计开发。采用四运算放大器的裸晶片和周边阻容元件研制了一款具有四路信号调理功能的集成模拟处理芯片LHB760,用来实现常规集成运放调理电路的模拟处理功能,具备针对不同类型D/A转换器的信号输入接口和LPF参数调整端子。通过对其带宽、功耗、噪声和其它电性能的仿真和测试,证明了其在保证常规电路性能的同时,能够在一定程度上节省系统资源。结合红外相机的研制目标,论文对LHB760在信息获取与处理电路中的应用进行了阐述。以LHB760为核心,研制了针对33000像元超长线列红外焦平面探测器的信息获取电路,对探测器输出的模拟信号进行了拼接、差分转换、A/D转换等处理。以FPGA为核心,对探测器的工作时序、多路开关选通、探测器供电芯片控制以及信息处理电路的数字器件的工作逻辑进行了设计,并将A/D转换后的并行数据转化为串行数据,经LVDS芯片传输至后端信息处理电路,从而完成探测器数据的采集、转换和传输整个过程。通过外景成像试验,获得了清晰的远景目标图像数据,验证了信息获取与处理电路的性能;在红外定标试验中,对红外相机在各种工作模式下的动态范围、噪声等效温差等性能进行了测试验证,不同工作状态下的动态范围高端可达324K~415K;在多种不同电路工作状态下的噪声等效温差优于50mK,均能满足研制目标,也进一步验证了信息获取与处理电路设计的合理性。
其他文献
随着深空探测活动的增加,传统的微波通信技术已满足不了未来深空探测中超大数据量的传输需求。而深空光通信技术是未来深空探测中实现大容量、高速率数据传输的关键技术,是未来深空测控通信的发展方向。大力发展深空光通信技术,将极大的推进未来的深空探测活动,有助于人类进一步了解宇宙奥秘、探索生命起源和利用太空资源。由于深空信道距离远、链路衰减大,需要高灵敏度的单光子探测技术、高效的调制及纠错编码技术。本文首先介
碲镉汞(HgCdTe,MCT)材料具有带隙可调、高量子效率等诸多优点,是红外光电探测器制备的主流材料。高背景环境下,MCT红外探测器的背景电流可能大于探测目标的信号电流。探测器的高背景电流和暗电流会导致读出电路中积分电容过快饱和,降低焦平面的信噪比和有效动态范围。MCT红外探测器的暗电流反映探测器的本质特征参数,暗电流会随着光敏元的面积变大而不断增大。暗电流会影响探测器的噪声,降低MCT红外探测器
Cd3As2和HgTe都是半金属材料,都具有反转的能带结构。根据理论预言,通过施加应变、降低薄膜厚度以及磁性掺杂等手段,可以将这两种材料变成拓扑绝缘体和Weyl半金属;此外它们还具有超高的电子迁移率,这在器件方面有潜在的应用前景,因此HgTe和Cd3As2材料在实验上都受到人们的广泛关注。我们通过分子束外延技术得到Cd3As2材料可以为后续的研究工作提供材料基础;同时Cd3As2薄膜的能带结构还没
低维材料在某一维度达到了纳米尺寸,具有不同于传统体材料的特异性质,这类材料在新一代电学器件、光电探测器、电催化以及生物可穿戴等多方面具有潜在的应用前景。在低维度领域,半导体的能带与尺寸具有明显的相关性,比如二维半导体禁带宽度随着厚度的减薄而增大,甚至可以从间接带隙变为直接带隙。根据半导体能带理论,一般把禁带宽度小于载流子室温热能(k T)的十倍(约0.26e V)的低维材料称为低维窄禁带半导体,这
碲镉汞(Hg1-yCdyTe,HgCdTe)是制备高性能红外探测器的优良材料,在气象预报、资源探测和天文观测等领域中有重要的应用。碲锌镉(Cd1-xZnxTe,CdZnTe)通过调节合适的Zn组分能够和碲镉汞材料在晶格上实现完全匹配,是外延高性能碲镉汞薄膜材料可选择的最佳衬底材料。尽管近些年来替代衬底上的HgCdTe外延技术已取得了长足的进展,但其实际应用主要为高背景应用领域的中短波红外焦平面探测
强度和偏振均是红外辐射的重要物理特性,传统的红外成像技术只能获取强度信息,而红外偏振成像技术可以同时获取到强度和偏振信息,是一项前沿的成像技术,在目标检测和遥感等领域有着重要的应用前景。目前,红外偏振成像系统主要包括分时偏振成像、分振幅偏振成像、分孔径偏振成像和分焦平面偏振成像。分焦平面偏振成像系统具有体积小和实时成像等优势,是红外偏振成像领域的研究热点。本文利用国产自研的红外分焦平面偏振探测器搭
编者按:习近平总书记强调,绿水青山就是金山银山。绿色发展是生态文明建设的必然要求,而发展绿色金融,依靠金融力量促进生态环境改善和资源节约高效利用,是推进绿色发展的路径之一。近年来,在党中央、国务院一系列支持和促进政策推动下,我国绿色金融呈现良好的发展态势。2017年6月,国务院决定在浙江、广东、贵州、江西、新疆五省份部分地区设立各有侧重、各具特色的绿色金融改革创新试验区,这标志着我国绿色金融
期刊
太赫兹量子级联激光器(THz-QCL)具备高功率、窄线宽、频率可调谐以及易集成的特点,在无损检测、安全检查、显微技术、生物医学与通信方面有着重要的应用价值,是一种理想的太赫兹源。随着太赫兹应用的快速发展,对高性能、高集成度、功能多元化的THz-QCL需求日渐增加。本论文着重围绕太赫兹主控振荡-功率放大量子级联激光器(THz-MOPAQCL)展开系统的研究。由于太赫兹波的产生与辐射在主控振荡-功率放
范德华层状材料因具有带隙分布范围广、光吸收作用强、载流子迁移率高等优异的光电特性,在光电子器件领域受到了广泛关注。经过十多年的研究发展,范德华光电子器件已经在光电探测器、偏振灵敏探测器、激光器、发光二极管和太阳能电池等方向展现出潜在的应用前景。然而,基于范德华层状材料光电子器件的一些基础研究还有待深入,如层状材料的缺陷研究、层状材料与金属的界面调控以及范德华异质结能带调控。本论文对范德华层状材料的