论文部分内容阅读
关于全非线性水波的研究对于海岸工程和海洋工程都具有重要的意义,另外,海啸对于近海岸居民的生命安全也存在潜在的威胁。因此,准确地预报波浪的传播变形是非常重要的。
Green-Naghdi理论,简称G-N理论,是一种全非线性的水波理论。一些学者称G-N模型为一种全非线性的Boussinesq模型。G-N理论的近似方法完全不同于其他水波理论所使用的摄动法,它只是引入了流体质点沿水深方向的速度变化假设。通过引入适当的速度场假设,G-N理论不仅能用来研究浅水波,也能对深水波进行分析。G-N模型中,通过沿水深积分的方法使得二维水波问题变为一维问题,三维水波问题变为二维问题,从而提高了计算效率。另外,非线性的自由面边界条件是在瞬时位置准确满足的,因此,G-N理论非常适合全非线性水波的研究。
G-N理论根据速度场假设的复杂程度不同,分为不同的级别,用“Level”表示。G-N理论的级别越高,数值模型越复杂,本文使用Mathematica数学符号软件进行公式推导。对于二维G-N理论,人们进行了较多的研究。然而,三维G-N模型的数值求解,仍然是一项困难的工作。本文的主要工作如下:
1.完整推导了一般形式的G-N理论控制方程。并分别给出了浅水G-N理论和深水G-N理论的控制方程。
2.研究了LevelⅠ至LevelⅦ七种不同级别的浅水G-N理论的线性解析解和色散关系式。发现LevelⅧ浅水G-N理论可以模拟Kd≤2626(K是波数,d是水深)的波浪,而且求解G-N模型时出现的最高阶导数只是3阶导数。对LevelⅠ至LevelⅢ三种不同级别的深水G-N理论的线性色散关系式也进行了讨论。
3.对G-N理论的数值模型进行了重新表述。对G-N模型的二维算法进行了研究,并对三维G-N模型的求解方程进行分析。结合Boussinesq模型的三维算法和G-N模型的二维算法,提出了G-N模型的三维算法。
4.利用流函数波浪理论的计算结果,使用最小二乘法对水深方向上流体质点运动速度进行拟合,提出了全非线性造波边界条件。解决了数值模拟强非线性浅水波时造波边界条件的给定问题。
5.对两个孤立波的迎面碰撞和追赶碰撞问题进行了研究。结果表明浅水G-N理论能够准确地模拟两个孤立波的碰撞过程。对非平整海底引起的三维浅水波浪传播变形问题进行数值模拟,研究表明浅水G-N模型比一些全非线性Boussinesq模型能更准确地模拟波浪的传播变形过程。
6.假定海底是时间的函数,即海底形状随时间变化,本文将浅水G-N模型应用于海啸问题的研究。对二维滑坡海啸、二维地震海啸和三维地震海啸进行研究。研究表明浅水G-N模型能够准确地模拟海啸的发生和传播过程。
7.使用全非线性深水G-N理论对浪向角分别为0°、15°和45°的深水单色波进行数值模拟,深水G-N理论的计算结果与流函数波浪理论的解吻合得很好。最后,在一个封闭方形水池中对风压兴波问题进行了研究,深水G-N理论展示了很高的计算精度和计算效率。