【摘 要】
:
在高肥胖率和人口老龄化的趋势下,心血管疾病等慢性病发生率越来越高。对血氧饱和度和心率等关键生命指标进行持续可靠的监测,对于预防慢性病来说变得非常重要。基于光电容积脉搏波描记法(Photoplethysmography,PPG)的检测方法广泛用于无创、连续、实时的人体血氧饱和度、心率、血压等生命体征参数监测,为临床医疗检测和便携式医疗设备提供了重要的技术方案。本文研究和设计了一种用于脉搏波信号检测的
论文部分内容阅读
在高肥胖率和人口老龄化的趋势下,心血管疾病等慢性病发生率越来越高。对血氧饱和度和心率等关键生命指标进行持续可靠的监测,对于预防慢性病来说变得非常重要。基于光电容积脉搏波描记法(Photoplethysmography,PPG)的检测方法广泛用于无创、连续、实时的人体血氧饱和度、心率、血压等生命体征参数监测,为临床医疗检测和便携式医疗设备提供了重要的技术方案。本文研究和设计了一种用于脉搏波信号检测的低噪声模拟前端(Analog front end,AFE)芯片,适用于弱灌注情况下的临床血氧饱和度及心率检测。本文设计的AFE芯片包括两部分:发射端(Transmitter,TX)和接收端(Receiver,RX),主要工作可概述如下:(1)针对脉搏波信号检测中的噪声与环境干扰问题,本文研究了PPG信号链噪声与信噪比模型,设计了全差分的RX端芯片架构,提出了一种级间环境干扰消除方案。全差分架构可以实现更好的共模干扰和噪声抑制,级间环境干扰消除方案采用7-bit数控电阻式补偿电流源,并将其放置在两级增益级之间,不仅可以实现宽范围的环境干扰消除,还可以降低RX端的等效输入噪声。(2)针对RX端中两级增益级带来的高功耗问题,本文设计了一种跨导电流共享方案。该方案采用电流复用放大器进行跨导电流共享,从而降低系统功耗。实验结果表明该方案可以降低近三分之一的RX端功耗。(3)针对TX端的多场景应用需求和动态范围不足问题,本文设计了一种6-bit可编程驱动电流源和TX端自调零的解决方案。该方案可以满足不同应用场景的宽范围LED发射光强需求,同时可降低运放失调影响并抑制低频噪声。实验结果表明该方案可以实现较高的TX端动态范围。本文提出的模拟前端芯片采用180-nm标准CMOS工艺设计并流片,芯片面积为2 mm~2。在1.8 V电源电压下,RX端功耗为220μW;在3.0 V电源电压下,TX端静态功耗为60μW。实验结果显示,RX端实现了低至2.3 p Arms的等效输入噪声电流;TX端实现了1%的线性度,以及110 d B的峰值动态范围。
其他文献
随着生物信号检测与处理技术和神经医学等方面学科的飞速发展,对微弱信号高精度处理的需求与日俱增,而增量型Sigma-Delta ADC(Analog-to-Digital Converter,ADC)无需精确的模拟元件匹配就能实现高分辨率,因此得到了广泛的应用,但是增量型Sigma-Delta ADC的精度、面积和功耗在很大程度上取决于数字抽取滤波器的结构。本文针对以上问题,提出了一种面向增量型Si
近年来,随着汽车数量的急剧增加,交通事故发生率也在逐年上升。同时,无线通信技术也在飞速发展,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)提出基于长期演进的车到万物(Long Term Evolution-Vehicle to Everything,LTE-V2X)技术用于保证交通系统的安全运行。LTE-V2X运行在5.9GHz频段,支持上行链
面部表情蕴含着丰富的情感和行为信息,可以直观地反映出人的情绪和心理活动。表情识别技术在安全驾驶、临床医学、智慧教学等领域有着广泛的应用,已成为计算机视觉研究中的热点。传统基于欧式空间的表情特征提取方法将图像作为标准的网格类型数据处理,虽然能有效地提取表情的时间和空间特征,但忽略了面部图像中的丰富的结构和关联特征,从而导致其特征表达能力有限,不利于于进一步提升对人脸表情的识别效果。论文结合与重庆某汽
我国海上安全形势日趋复杂,海上军事争端越演越烈,能否快速准确地检测船舰目标极大地关系到战争的成败;因此,确保海域安全是我国现在以及今后军事战略的重点。近年来,随着合成孔径雷达(Synthetic Aperture Radar,SAR)成像技术的发展,对船舰目标的精细化观测水平越来越高,使得利用深度学习相关技术挖掘船舰目标的深层特征和精细化信息,进一步提高SAR船舰目标检测性能已成为可能,引起了国内
传统建筑业安全风险防控主要采用基于人工巡检的“人防”手段,存在不可回溯、可靠性差、人力成本高等问题。基于视频监控的“物防”手段在一定程度上可提升风险防控能力,但无法实现实时的风险要素识别和预警。随着人工智能技术的快速发展,基于智能化目标识别技术的智慧工地“技防”手段成为大势所趋。论文结合建筑工地环境复杂多变的实际情况,研究部署便捷、支持风险要素目标实时识别的轻量级目标检测算法和实现智慧工地风险监测
情绪是一种能够表达人的思想、感觉等的综合状态,在人们的交流中有着举足轻重的作用。尤其在人-机交互的研究中,若能准确识别情绪,人-机交互的应用就会更加智能且自然。研究发现,情绪识别的研究综合了认知心理学、计算机视觉、人工智能和脑科学等领域,现已成为一项重要的交叉学科研究课题。如何准确和快速地识别出情绪,一直是该交叉学科领域研究的关键科学问题。目前较成熟的情绪识别算法中,ESRs算法能有效减少剩余泛化
压缩感知理论不再约束于奈奎斯特-香农采样定理对采样频率的要求,其将采样过程和压缩过程进行有机结合,为如何进行有效的信号采样、传输和存储提供了新的模式,将压缩感知应用于图像处理领域,能够减少采样数据量且避免高速采样。从极少量的测量值中有效且高概率高质量恢复出原始信号是压缩感知图像重建研究的核心问题,学者们相继提出了传统和基于深度学习的压缩感知图像重建算法,传统算法基于数学推导是可解释的,但其重建质量
行人重识别技术旨在通过对多摄像头拍下的行人目标进行身份一致性匹配,从而实现对跨摄像头下行人运动轨迹的准确追踪,目前被广泛应用于安全监控、道路交通、智慧校园等领域。面对大量的监控数据时,使用行人重识别技术进行智能识别,可以实现更快、更高效的信息处理和信息分享,提高生活智能化水平,对维护社会稳定安全都具有重要的意义。由于摄像机获取的行人数据集存在光照变化、复杂背景、姿势差异和遮挡等问题,目前的方法往往
随着车辆正在向智能化、网联化演进,行车安全预警作为车辆重要的智能应用之一,受到学术界的广泛关注,有效的行车安全预警能够极大程度提高交通安全,提升驾驶体验。行车安全预警策略一般基于实时道路交通流特性以及本车行驶特性进行建立,如果能够及时发现行车过程中的潜在行车风险,并以之为依据,生成行之有效的行车策略,则能够防患于未然;因此,行车潜在风险的评价方法已经成为学术界的关注重点。本文从VTTI100car
无人机(Unmanned Aerial Vehicle,UAV)作为一种新兴装备,具有灵活部署和易于控制等特点。将UAV应用于现代移动通信网络,从而扩大网络覆盖范围或构建UAV集群网络,已成为无线通信领域研究热点之一。与此同时,伴随着Alpha Go的成功,作为强化学习(Reinforcement Learning,RL)重要分支的多智能体强化学习(Multi-agent RL,MARL),由于能