论文部分内容阅读
Spiking神经网络采用脉冲的形式来传递和处理信息,可以充分利用输入信号的时间和空间信息,抗干扰能力强,易于硬件实现,适合于动态环境下的机器人控制。本文开展基于Spiking神经网络的机器人控制研究,主要内容如下:
首先,本文综述了移动机器人和多机器人系统的研究现状,同时描述了Spiking神经网络的基本特征及其在机器人控制中的应用,并对研究背景和论文结构做了介绍。
其次,设计了基于Spiking神经网络的移动机器人目标跟踪控制方法。机器人通过视觉、码盘以及超声传感器获取目标信息及障碍信息,预处理后送入神经网络进行脉冲编码、融合,与电机对应的正/反向神经元相互竞争生成神经网络的输出信号,滤波限幅后送入电机中,驱动机器人朝目标无碰运动。
第三,提出了一种基于Spiking神经网络的领航一跟随机器人队形控制器。网络分三层,分别采用LIF模型、近似一致性编码以及SRM模型,完成对传感器和任务相关信息的编码、融合以及控制信号生成,最终实现无碰的队形控制。对采用一致性编码的神经元的点火率进行了分析,并引入参考信号对输入信号相关性进行了检测。
第四,设计了基于模块化Spiking神经网络的多机器人围捕控制器,采用延时编码,由12个神经元模块和4个电机神经元组成。每个模块编码、融合来自其敏感方向周围的目标、传感及协调相关信息,输出信号送入电机神经元,进而实现对动态目标的围捕,网络权值采用基于随机策略的Hebbian学习进行调整。还针对采用延时编码的神经元,分析了噪声对其输出信号可能造成的影响。
第五,设计了一个递归的三层Spiking神经网络用于图像信息提取。输入层神经元具有输入/输出方向选择性,提取边缘信息;中间层神经元融合输入层的输出脉冲,并反馈到输入层;输出层浓缩中间层提取的图像信息。在神经元局部连接的情形下,该Spiking神经网络能够提取物体的位置以及大小等信息。通过模版匹配,对有颜色信息目标识别和无颜色信息目标识别进行了研究。
最后,论文对所取得的研究成果进行了总结,并阐述下一步的工作。