论文部分内容阅读
目的:随着人口老龄化进程的加速,骨质疏松发病率已跃居世界各种常见病的第7位,骨质疏松症(osteoporosis, OP)越来越引起人们的重视和广泛研究。由于骨质疏松症早期无明显临床症状,而它所带来的骨质疏松性骨折危害性极大,因此早期诊断和早期治疗显得至关重要。骨矿物质密度(bone mineral density, BMD)是骨质疏松症诊断及评价疗效的重要依据。虽然目前用于骨密度测定的方法有很多种,但在实际测量中均有一定局限性和很多干扰因素(如软组织影响、异位钙化、骨折、放射量太大等),如何减少此类因素的影响以提高精密度和准确度是目前骨密度测量中亟待解决的重要问题。在诸多骨密度测定方法中,双能x线骨密度吸收法(dual energy x-ray absorptiometry, DXA)是国际公认的诊断骨质疏松的“金标准”。但此类仪器价格昂贵,迄今中国内地共有350台左右,多数分布在大城市,而≥60岁的老年人群已有1.3亿,显然远远不能满足需要。不仅如此,DXA在实际测量中还受到病人体位和操作人员如何确定感兴趣区等条件限制,测量精确性受到影响;且DXA测量的并不是真正的体积BMD,会受到骨体积大小的影响;不能分别测量松质骨和皮质骨,对反映骨丢失和治疗反应不够敏感;不能获得骨的大小、形态等几何参数,因此DXA在骨质疏松诊断和骨折危险性预测等方面受到限制。鉴于目前骨质疏松迅猛上升的发病率及DXA在广泛推广及骨强度测定等方面所限,有必要选择一种更加实用、简捷和精确的技术用于骨密度的测量和骨折危险性的预测。直接数字化放射摄影(Digital Radiography, DR)技术是目前广泛用于临床影像诊断的新设备,不仅丰富了形态医学诊断的信息、层次,逐步改变了传统放射技术并与快速发展的计算机、网络技术融合,大大提高了医学影像的质量,同时DR的后处理系统具有多种后处理功能如:测量(大小、面积、密度)、局部放大、对比度、反转影像、影像边缘增强,双幅显示及减影等,为骨密度测定提供了可能,引起了国内外学者的关注。本研究拟通过采用DR技术的骨盆正位片,测定股骨近端(股骨颈、ward三角和大粗隆)象素值,与DXA测定的相应部位的骨密度进行对比研究,旨在探讨DR技术在骨密度测定中的应用价值。方法:河北医科大学第三医院门诊健康查体患者304例,年龄30-70岁,通过问诊及必要的辅助检查(如实验室检查等),排除以下情况:骨肿瘤等器质性病变、陈旧外伤、继发性骨质疏松、糖尿病、内分泌性骨病等病史者、近期服用影响骨代谢的药物者及肝肾功能损害者(谷丙转氨酶>60U/L,血肌酐≥133umol/L)等。根据标准骨盆平片制定测量股骨颈密度的三点、ward三角一点及股骨大粗隆三点,首先由影像技师利用DR拍摄标准骨盆平片,影像诊断医师对正常的DR骨盆平片在图像后处理工作站,感兴趣区(ROI)用手动划分,选点方法如下:1.以股骨近端大小粗隆上缘连线为基线,垂直向上2cm画一平行线,在两线之间股骨颈区域内3等份,选择上等份中3点;2.选择ward三角1点;3.利用后处理工作站作图工具,选择距离股骨大粗隆上缘0.5 cm处约1 cm2区域内的3点。分别求股骨颈和大粗隆3点的平均值,最后得出股骨颈、ward三角及大粗隆的象素密度,减去没有组织与之重叠的背景值,予以记录。同期有固定人员对该组人群利用双能X射线骨密度仪行相同部位的骨密度测定。分别按年龄分层观察DR象素值和DXA骨密度各部位峰值年龄段,及达峰值骨量后随年龄变化的趋势,进行两种技术测量数值的相关性研究,对DR测得的象素值进行左右侧对比检验。结果:1正态分布检验各部位测得数据均符合正态分布。2受试者各部位DR象素值和DXA骨密度值在各年龄层数据分布左侧股骨颈DR象素峰值在40~最高为(960.22±281.50)Hu,以后随年龄增长逐渐下降,60~最低(783.19±157.51)Hu;右股骨颈DR象素峰值30~最高为(959.97±245.91)Hu,以后随年龄增长逐渐下降,60~最低(806.98±188.65)Hu。左ward三角DR象素峰值30~最高为(867.62±213.34)Hu,以后随年龄增长逐渐下降,60~最低(669.52±161.23)Hu;右ward三角DR象素峰值30~最高为(890.46±237.96)Hu,以后随年龄增长逐渐下降,60~最低(700.06±184.34)Hu。左侧大粗隆DR象素峰值40~最高为(696.91±233.42)Hu,以后随年龄增长逐渐下降,60~最低(551.11±154.06)Hu;右侧大粗隆DR象素峰值40~最高为(719.73±236.59)Hu,以后随年龄增长逐渐下降,60~最低(563.03土156.74)Hu。左右股骨颈DXA骨密度峰值均在30-,分别为(0.78±0.12)g/cm2和(0.79±0.12)g/cm2,以后随年龄增长逐渐下降,60~最低分别为(0.68±0.14)g/cm2和(0.69±0.14)g/cm2。左右ward三角DXA骨密度峰值均在30-,分别为(0.66±0.16)g/cm2和(0.69±0.17)g/cm2,以后随年龄增长逐渐下降,60~最低分别为(0.50±0.17)g/cm2和(0.51±0.16)g/cm2。左右大粗隆DXA骨密度峰值均在30~,分别为(0.72±0.11)g/cm2和(0.69±0.11)g/cm2,以后随年龄增长逐渐下降,60~最低分别为(0.63±0.14)g/cm2和(0.60±0.13)g/cm2。3不同部位DR象素值和DXA骨密度值年龄分层比较LSD分析双侧股骨颈DR象素值:左右侧股骨颈30~DR象素值与50~和60-比较明显升高(均P<0.01);40~DR象素值与50~和60~比较明显升高(均P<0.01)。双侧ward三角DR象素值:左右侧ward三角30~DR象素值与50~和60~比较明显升高(均P<0.01);40~DR象素值与50~和60~比较明显升高(均P<0.01)。双侧大粗隆DR象素值:左侧大粗隆30~DR象素值与50~和60~比较明显升高(均P<0.01);40~DR象素值与50~和60~比较明显升高(均P<0.01)。右侧大粗隆30-DR象素值与50~和60~DR象素值比较均明显升高(P<0.05和P<0.01);40-DR象素值与50~和60~比较明显升高(均P<0.01)。双侧股骨颈DXA骨密度:左侧股骨颈30~DXA骨密度与50~和60~DXA骨密度比较明显升高(均P<0.0l);40-DXA骨密度和60~比较明显升高(P<0.01)。右侧股骨颈30~DXA骨密度与50~和60~比较明显升高(均P<0.01);40-DXA骨密度与50~和60~比较均明显升高(P<0.05和P<0.01)。双侧ward三角DXA骨密度:左侧ward三角30~DXA骨密度与50~和60-DXA骨密度比较明显升高(均P<0.01);40-DXA骨密度与50~和60~比较均明显升高(P<0.05和P<0.01);50-DXA骨密度与60~比较明显升高(P<0.05)。右侧ward三角30~DXA骨密度与50~和60~DXA骨密度比较明显升高(均P<0.01);40-DXA骨密度与50~和60~比较明显升高(均P<0.01);50-DXA骨密度与60~比较明显升高(P<0.05)。双侧大粗隆DXA骨密度:左侧大粗隆30~DXA骨密度与50~和60-DXA骨密度比较均明显升高(P<0.05和P<0.01);40-DXA骨密度和60~比较明显升高(P<0.01)。右侧大粗隆30~DXA骨密度与50~和60~比较明显升高(均P<0.01);40-DXA骨密度和60~比较明显升高(P<0.01)。4各部位DR的象素密度和DXA的骨密度相关性左右侧股骨颈DR的象素密度和DXA的骨密度均呈明显正相关(r=0.36,0.42)(均P<0.01);左右侧的ward三角部位DR的象素密度和DXA的骨密度均呈明显正相关(r=0.515,0.515)(均P<0.01);左右大粗隆部位DR的象素密度和DXA的骨密度均呈明显正相关(r=0.504,0.464)(均P<0.01)。5各部位左右侧DR象素值比较股骨颈左侧象素值(891.89±94.72)与右侧(902.00±92.84)比较无明显差异(t=1.267,p>0.05);ward三角左侧象素值(792.83±87.58)与右侧(812.94±76.19)比较无明显差异(t=1.188,p>0.05);大粗隆左侧象素值(635.57±55.99)与右侧(655.61±54.81)比较无明显差异(t=1.101,p>0.05)。结论1石家庄地区健康成人髋部骨密度峰值为30~。2股骨近端(双股骨颈、双ward三角和双大粗隆)DR的象素值在各年龄段不尽相同,达到峰值后的变化趋势是随年龄增长而下降。3双股骨颈、双ward三角和双大粗隆DR的象素值与DXA骨密度均呈明显正相关,DR象素值可反映测定部位的骨密度。4股骨颈、ward三角和大粗隆左右侧的DR象素值无统计学差异,任意一侧的DR象素值可代表对侧。