论文部分内容阅读
大气气溶胶是指大气中悬浮的固、液态微粒与气态载体共同组成的多相物质体系。由于其在全球地-气辐射收支平衡和气候迁移及动态变化中起关键作用,故能对局部乃至全球大气、生态、环境系统发生极其深远的影响。气溶胶组分中空气动力学直径小于等于2.5μm的组分通常被称作可入肺颗粒物(Repairable Particles)或PM2.5,其对于大气质量监测与公共环境政策制定至关重要,也成为环境科学领域的热点研究问题。近年来,伴随着社会、经济持续高速发展,城市化进程不断加深,大中城市出现广泛且持续的灰霾天气,使得我国成为全球颗粒物污染最严重的区域之一。基于PM2.5粒子的消光特性,利用卫星遥感数据反演气溶胶光学厚度(Aerosol Optical Depth,AOD),从而间接获取近地面PM2.5空间分布特征,是监测PM2.5浓度分布的一项便捷高效手段。受益于遥感自身观测特点与数据分辨率(空间、光谱、时间)的普遍提升,利用遥感监测PM2.5空间分布,从而快速获取大范围、时空连续的PM2.5质量浓度信息方面具备极其明显的优势。但由于大气环境复杂的时空变异特性,同时受限于我国颗粒物遥感监测起步较晚,且长期缺乏大范围、长时序的PM2.5地面监测数据,使得我国在城市AOD高精度反演、颗粒物遥感估算模型精度及时空适用性等方面仍有待提高。由于城市区域相较于其他陆域地表,其地表反射率较大,使得地表贡献确定困难,因此地气贡献分离是AOD高精度反演要解决的关键问题。本研究沿用暗像元V5.2算法获取城市区域高亮地表反射率,将红、蓝波段地表反射率定义为植被指数与散射角的函数,实现城市亮地表反射率获取。由于气溶胶模型直接影响区域颗粒物消光特性,针对当前气溶胶类型划分粗放,不满足大比例尺区域反演需要的问题,本研究在V5.2算法基础上采取一种确定气溶胶组分体积百分比的数学模型,自定义研究区气溶胶组分体积比,研究结果表明,采用自定义气溶胶模型相对于传统既定模型,AOD反演相对误差值低至少4%,且反演精度高、模型可靠。本研究基于6S辐射传输模式构建查找表实现AOD高精度反演,针对传统查找表结构冗余,步长设置过于紧密,效率低下等问题,本研究在考虑传感器几何成像条件、大气条件和地表高程等影响大气校正的多个耦合因子,借助6S模型逐个分析了各输入变量对光学厚度的影响,以合理约束不同输入变量的步长;同时选取合理的查找表插值算法,通过研究和分析查找表不同存储方式的效率和精度,建立多维、高效、高精度的AOD反演参数查找表。本研究采取自定义气溶胶模型算法、查找表结构、步长优化设计方案,并结合暗像元V5.2算法实现研究区气溶胶AOD高精度反演,与MODIS气溶胶产品(10 km)相比,具有更高的空间分辨率(1 km)、更丰富的空间细节。本研究的AOD反演结果与AERONET监测数据在0.01置信水平(双侧检验)下显著相关,其Pearson相关系数为0.756,二者具有更高的相关性(年均R2=0.857)。由于气溶胶中存在大量可溶性成分,受环境湿度的影响,在凝结与蒸发效应下其粒径,密度,形状,复折射指数及粒径分布函数都会发生改变,颗粒物消光截面增大,使得相同浓度的粒子在不同湿度条件下消光特性有较大差别。需要在拟合二者关系模型前进行湿度订正,以减少气溶胶消光系数随湿度变化而引入的不确定性。研究中引入气象数据、AERONET数据、能见度数据探求气溶胶消光系数的吸湿增长规律,采用平均质量消光效率描述城市复合气溶胶粒子整体消光特性随湿度的变化规律,并基于平均质量消光效率的吸湿增长因子描述空气相对湿度(Relative Humidity,RH)对粒子整体消光的特性影响,并在二者数据的基础上,拟合出研究区最佳PM2.5吸湿增长模型。AOD是气溶胶粒子在垂直方向上消光系数的总积分,而PM2.5实测值仅表征近地面空气质量。为了减少关系模型的不确定性,需要探究气溶胶垂直分布特征,获取气溶胶标高(Aerosol Standard Height,ASH),将AOD转化为近地面气溶胶消光系数,与PM2.5地面监测数据在垂直层上进行匹配。本研究对经典Peterson模型进行改进,通过增加时间变量考虑大气状态变化对模型的影响,动态化获取季节性标高以实现垂直订正。在对AOD与PM2.5湿度与垂直订正后,本研究利用卫星遥感AOD首先采用直接预测、考虑垂直与湿度订正后预测,建立线性、对数、一元二次、幂指函数等拟合模型,并对各模型进行精度分析与验证。为探究气象因子对预测效果的影响,研究中进一步联合气象因子建立全年和四季的多元线性和非线性回归模型进行PM2.5浓度预测。由于气象因素为主的因子与PM2.5之间呈现出较强的非线性,考虑到相比多元回归建模预测,机器学习算法建模能较好捕捉PM2.5质量浓度与各输入因子之间的非线性影响规律,研究又引入BP神经网络进行PM2.5质量浓度预测,并对各模型反演效果对比分析。实现以遥感技术监测AOD为基础,利用两者的定量模型达到量化PM2.5浓度的目的,弥补了传统大气监测以点带面的不足,从而为运用卫星遥感手段来实时动态监测PM2.5浓度提供一种新思路。