联盟链可扩展共识服务技术研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:tongys
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
得益于分布式、安全和可追溯的特点,区块链技术自诞生以来就被广泛应用于各类应用场景。但是,与已建立的解决方案(例如分布式数据库系统)相比,区块链系统的吞吐率仍不理想,已经成为阻碍区块链发展的重要挑战之一。作为一种有准入机制的区块链,联盟链相比于公链增加了可监管特性,在交易处理和交易确认延迟方面相较于公链有着显著提升。但当前联盟链使用的共识算法只支持单节点串行出块,如联盟链代表Hyperledger Fabric使用的是基于“领导者-跟随者”模型的Raft共识算法,是严格的单个Leader打包区块,多个Follower参与共识的算法。单个节点串行化出块会造成事务阻塞,严重降低了系统性能。为了构建具有性能保证的可扩展联盟链,本文基于P2P中的DHT(分布式哈希表)的思想,提出了支持多个排序节点并行出块的DHT-Orderer共识机制。具体研究内容包括:1.根据DHT的一致性哈希算法,所有交易和排序节点都可通过哈希算法映射在一个环中。交易通过DHT算法路由到环中具体的节点进行处理。因此,环上所有的排序节点都可以独立进行打包出块工作。同时,由于DHT支持节点动态加入和离开,DHT-Orderer不再需要类似Raft/Paxos的协议。为了避免排序节点之间的交易分布不均衡,可以为物理节点创建虚拟排序节点以缓解。2.针对节点分布式出块的区块顺序一致性问题,在DHT-Orderer中,将key=0所路由的节点作为mainNode,其余节点将交易打包成未排序区块,转发给mainNode。mainNode收到后将所有的区块进行排序,区块处理完成。mainNode按照FIFO策略排序,可以达到极高的性能。3.基于Hyperledger Fabric平台实现了可插拔的DHT-Orderer原型系统。为了验证DHT-Orderer的性能,分别从区块容量、超时时间、允许接收最大Tx数量、参与共识的DHT节点数、并发事务数以及通信机制等方面进行了性能测试。实验结果表明,当区块限制容量为(最大容量5MB,建议容量2MB),超时时间为2s,区块最大接收Tx数量为500时,系统TPS可以达到1700左右,在与现有的基于Raft协议的Raft-Orderer相比,DHT-Orderer共识机制在吞吐量、时延与可扩展性等方面性能有着显著提升,符合企业级联盟链的需求。
其他文献
随着互联网时代的到来与发展,为大数据、云计算、人工智能等新兴技术提供了肥沃的土壤,同时也为各行各业带来了新的变革与推动。教育作为民族振兴、社会进步的基石,一直是我国优先、重点发展的行业。长期以来,我国教育面临的突出矛盾是人们对高质量个性化教育服务的迫切需求与优质教育资源供给的严重不足,针对教育资源供给侧的创新和个性化教育服务新模式的探索是当前教育改革与发展所面临的重大课题。本文搭建支持矩阵自动推理
语义匹配技术备受关注,成为了当前自然语言处理技术应用领域热点话题之一,在问答系统以及信息检索等领域拥有着广泛的应用场景。目前,最热门的语义匹配模型为基于BERT的微调模型,但是大多数基于BERT模型的语义匹配技术由于采用统一注意力机制,对于句式复杂的文本语义信息抽取不够充分,导致对句子语义的理解存在偏差;同时,BERT模型规模庞大,计算量着实惊人,仅仅单个样本计算一次的开销动辄上百毫秒,在严格的延
随着科技水平的进步,视频数据在人们的日常生活中占据着越来越重要的地位。视频中存在着大量的文字信息,对其进行提取有助于视频内容的审核以及视频内容归纳分类。而视频文字检测识别技术能很好的满足对于大量视频内容提取与审核等方面的需求。相比于人工,借助视频文字检测识别技术进行视频内容提取与审核等工作,能够大幅提高效率并降低人力成本。本文基于深度学习技术,对视频文字检测算法和视频文字识别算法进行了研究,设计实
对于医学图像分割任务来说,传统的手工方法依托于医生的经验知识,不仅耗时耗力而且分割精度也没有保证。而随着计算机技术的发展,依托于深度学习的自动化分割方法在各个领域显示出了自己独特的优势,于是有了将深度学习与医学图像相结合来实现自动化医学图像分割的技术。在此背景之下,本文以深度学习为工具探索生成式对抗网络在脑肿瘤分割中的应用,主要工作如下:(1)从多尺度特征的角度出发实现了一个基于并行多尺度的生成对
在当前大数据时代,大量的医学影像没有得到有效利用。而在医疗、教育以及科研等领域却亟需大量经过标注的数据,因此需要一种技术对医学影像进行标注。然而使用手动标注的方法耗时耗力且需要医学专业人士才能完成,人工智能技术的兴起为医学影像的自动标注带来了福音。传统的自动标注方法仅仅使用了图像单一模态的数据,与图像数据紧密相关的诊断报告却未得到使用。因此本文提出了一种利用跨模态方法进行医学影像自动标注的技术,重
随着医学诊疗技术的发展以及胚胎发育理论体系的完善,体外受精-胚胎移植技术在经历了四代的更迭后已然成为不孕不育等相关疾病的首选治疗方案。其中,胚胎植入前的形态学诊断是成功移植的关键,原核期胚胎特征作为诊断的首要依据更是有着严格的定义。本文通过计算机视觉技术实现胚胎特征识别算法,相较于传统识别方案,算法能够自动且有效地分割胚胎主体区域并在原核期胚胎首要特征识别中获得接近医师的精度水平。最终给用户提供一
近年来,随着计算机视觉领域技术的不断突破与创新,在图像信息利用越来越多元化的背景下,视频预测成为当下深度学习研究的一个热点方向。视频预测技术以给出的图像信息为基础,通过构建一个可以精准建模视频内容和动态变化的内部表征模型预测未来视频帧,并应用于机器人、自动驾驶汽车和无人机提前决策等多个场景。针对于当前大多数视频预测技术对于时间信息提取的不足,导致连续帧出现的动作伪影以及动作模糊的难点,本文基于现实
近来年,随着人工智能技术的落地应用,人们的学习和生活方式发生了极大的变化。在教育行业,自然语言理解、知识图谱和知识推理等技术更是对其产生了深远的影响,基于知识图谱的推理自然受到了越来越多的关注和研究。然而在推理过程中,需要考虑不同的策略。本文正是基于上述背景,研究和实现了图推理中的组合分支技术,并将其应用到了初等数学求解中,主要包括如下内容:1、研究和实现了组合分支技术中的分层策略。本文最终划分了
面对信息爆炸的时代,用于信息搜索的智能问答技术发展迅速。用户通过问答系统,从海量信息中检索出准确信息。传统问答算法利用浅层语义,获得简单问题的答案,但无法获得更深的语义层次,难以给出更加准确的信息。以知识图谱为基础的问答系统,结合知识图谱中的语义信息和知识结构,能够检索出更加准确的答案。但是,目前的研究多是在一个理想的状态下进行研究的,即用户所输入的问题,能够在知识图谱中通过推理全部得到答案。在实
随着人工智能的飞速发展,为专注于对计算机推理能力的挖掘,微软推出数学图表类数据集Figure QA,旨在用简单的图形图表组合让计算机完成数学推理任务。而对于计算机而言,要完成对图像信息的整合并结合文字信息进行推理,首先需要完成的就是对图片信息的提取,也就是对图片进行目标检测。因此本文的主要研究内容为图像问答过程中所涉及到的的目标检测过程。对于数学图表类图像而言,与主流目标检测模型中通常采用的真实场