局部化学法热解油页岩的理论与室内试验研究

被引量 : 0次 | 上传用户:yeluanwu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着能源需求的不断增长与常规燃料的日益紧缺,油页岩作为一种非常规能源,以其巨大的储量引起了全世界的广泛关注。油页岩是一种富含有机质的细粒沉积岩,其特殊的组成和结构决定了它在能源、矿产、化工以及建筑方面具有广阔的潜在用途,但油页岩的最大使用价值是炼制页岩油。我国页岩油储量仅次于美国列居世界第二位,寻求油页岩经济有效的开采途径对改善我国能源短缺和促进我国经济发展具有重要的现实和战略意义。本文以吉林省油页岩为研究对象,深入研究了桦甸油页岩热解的过程及动力学特征、油气产物的形成和释放规律、固体残渣孔隙结构的演变行为,并提出了局部化学法热解油页岩的新思路。本文首先采用热重仪研究了油页岩的热解特性,获得了油页岩在热裂解过程中各阶段的特征参数,定量描述并分析了升温速率、颗粒粒径、样品量以及实验气氛等对油页岩热解特性的影响,确定了油页岩热解反应的动力学参数。结果表明,油页岩的热解是一个多相及多阶段的平行与竞争反应交差进行的过程。在此过程中,油页岩内不断的发生键断裂、产物的重组及二次反应等,最终使油页岩中的有机质等热裂解成页岩油和页岩气,并生成固态的半焦或焦炭。其热解过程可分为三个阶段:水分的蒸发(<200°C)、有机质的分解(300~550°C)和无机矿物的分解(>600°C)。随着升温速率的增大,油页岩分解和挥发分析出的各特征温度点都向高温区移动,热解反应变得集中;但是升温速率对总失重量并没有影响。颗粒粒径对油页岩热解的影响主要表现在样品颗粒间的堆积效应上。而样品量较多时,会不利于产物的排出。油页岩热解活化能随着热解的深入而增大,升温速率、颗粒粒径及样品量对活化能影响较小。油页岩的燃烧也可分为三个阶段。在不考虑制氧成本的前提下,油页岩的燃烧性能可以通过增加氧气浓度来提高,随着氧气浓度的升高,油页岩的着火能力增强,燃烧性能变好,产物释放更加集中。在反应气氛固定时,随着升温速率的增大,油页岩的着火温度、燃尽温度等都向温度区移动,燃烧性能变差。油页岩燃烧第二阶段的平均活化能随着氧气浓度的升高而增大、升温速率的升高而降低。综合考虑各项因素可知油页岩在空气中就可达到良好的燃烧性能。此外,在各种实验条件下,采用Kissinger-Akahira-Sunose法求解的反应第二阶段的平均活化能比Coats-Redfern法高。第三章利用气相色谱-质谱联用仪、元素分析、傅里叶变换红外光谱、X射线衍射、扫描电镜、氮气吸附、压汞法、孔隙率和渗透率等测试分析手段对油页岩热解后的油气产物及固体残渣进行了系统的表征,深入分析了油页岩在热解过程中的油气产物释放机理及固体颗粒的物理、化学结构演化规律,并采用分形维数定量描述了油页岩颗粒表面孔隙形态的复杂程度,揭示了油页岩的热解机理。结果表明油页岩中孔隙结构的演变与有机质的受热分解和固体颗粒的热膨胀及热破碎有关。热解的油气产物主要在300~600°C间产生,气体的主要成分为甲烷、乙烷、乙烯等有机物,页岩油的主要成分为脂肪族化合物,芳香族化合物含量较少。在热解温度高于350°C时,固体残渣的化学组成变化显著,红外谱图中羟基、烷烃和烯烃对应的峰明显减少;在热解中期,随着干酪根的大量分解,固体残渣的孔隙不断增多,微孔和介孔的平均孔径先轻微减小而后显著增大,同时,大孔大量发育,孔隙率和渗透率也不断增大;在热解温度高于600°C后,油页岩中只剩矿物骨架,无机矿物的分解以及孔隙内部的微调整会影响到微孔和介孔的结构特征但对骨架间大孔的数量和形貌影响不大;高温作用使得孔隙结构更加有序化、连通性增强,渗透率仍有所升高。此外,油页岩热解后的固体残渣的孔隙结构具有分形特性,其分形特征与热解温度密切相关;而且残渣中孔隙的平均孔径与对应的分形维数表现出明显的负线性相关性,说明孔径越小孔结构越复杂。结合吉林省油页岩特征,本文提出了局部化学法热解油页岩的新技术,这是一种通过油页岩与氧发生局部的化学反应来实现油页岩自发裂解的技术。该技术经济、可靠,可应用到油页岩原位开采中。该技术首先采用热空气来触发油页岩内局部的化学反应,而后随着油页岩温度的升高(约250~300°C),只需常温空气就可以实现油页岩的全部热解。本文在自主设计的水平式固定床上进行了一系列实验,模拟分析了不同工况下的反应峰面传播和温度场演变行为,并进一步分析了实验各产物的产量和特性,最后探讨了局部化学法热解油页岩的反应机理。研究表明,局部化学法热解油页岩是一种高效节能的可实现油页岩自发裂解的技术,既不是简单的物理加热,也不是完全地下燃烧,是由局部的化学反应触发的一种化学热强化处理的过程。该方法充分利用了油页岩中潜在的热量,通过触发氧气与固定碳、水及部分有机质间局部的化学反应来实现油页岩的自发裂解过程,且反应一旦被触发后,油页岩在有少量氧气存在的条件下即可自发而平稳的完成全部裂解而不再需要外界能量的输入。实验表明整个反应易被触发和重复,过程容易控制、产油率较高,产生的页岩油品质与传统干馏得到的页岩油相似,主要为碳氢化合物。此外,实验发现完全畅通的水平井可能不利于油页岩与热载体进行充分的热交换;相反,水力压裂可增大地层中的孔隙裂隙,使得地层的连通性增强,有利于油页岩层内的传质和传热。希望本文的研究工作可为油页岩原位开采技术的发展提供新的思路。
其他文献
历经半个多世纪的发展,项目管理理论与方法已经在诸多领域广泛应用,项目管理学科从形成到成熟已经构建了相对完整的知识体系。采用信息可视化方法绘制科学知识图谱,进行项目
食品安全是重大民生问题,近年来,国内食品安全事件频发,一系列食品安全问题让人触目惊心,引起了国家和社会对食品安全的高度关注,迫切要求加快解决食品安全领域存在的突出问
由于跨国资本、国际技术等因素的自由转移和流动,企业愈加重视税收筹划,而资本弱化避税,作为税收筹划的重要手段之一,也越来越多地被企业所使用。各国政府根据本国不同的实际情况
随着近几年来雾霾天气的增加及其人们对可吸入肺中颗粒物即PM2.5的热议,大众的视线重新聚焦到环境保护的问题上。我国“重经济轻环保”的思路使得环境危机越来越严峻,环境侵害
卫星通信系统在其发展的历程中,一直在通信网络中扮演着重要的作用。在人烟稀少的地区或者在地面网络无法覆盖的茫茫大海之中,卫星通信成为人们与外界联络最有效的桥梁,此外
电动汽车就是以车载蓄电池提供的电能作为动力的一种新型环保汽车,是解决不可再生的化石能源大量消耗、环境污染以及降低运营成本的重要途径。电动汽车的充电方式分为有线充
纯电动汽车整车控制系统由电机及电机控制系统、电池及电池管理系统、组合仪表报文转换盒及整车控制器等组成。整车控制系统的控制目标是保证整车性能和行车安全。因此,整车控
随着知识经济时代的到来和互联网技术的迅猛发展,在线学习这一学习方式已经被广大学习者逐渐接受。由于互联网高效、免费、便捷的特点,在线学习被大多数的学习者所认可。随着
创新是企业提高绩效水平,取得并保持长期竞争优势的源泉。创新研究已成为战略管理研究的焦点。其中,有关技术创新投入与创新绩效之间关系的研究引起了众多学者的关注。有的研究
随着社会经济的发展,企业的制度也愈加健全,人力资源在企业中的重要性愈来愈突出,逐渐成为衡量企业综合竞争力重要标准之一,是企业重点发展的核心战略资源。一个有效的人力资源管