论文部分内容阅读
在高端制造中,零件的清洁度与制造精度是影响产品性能的两大核心指标。零件清洁度不达标可能导致飞机起落架无法收放、导弹偏离靶标、高铁制动失效、汽车不能切换档位等严重事故,因此,在航空、航天、高铁制造、汽车工业等领域中,清洁度的要求越来越高。当前,我国汽车自动变速器行业全面落后于西方发达国家,究其原因之一就是自动变速器核心零件清洁度不达标,因此有必要展开对自动变速器阀体清洁度的系统研究。高压清洗是一种绿色环保的清洁度提升方法,针对高压清洗参数选择简单盲目的问题,本文通过对水射流的结构特征和动态特性的分析,结合水射流的清洗机理寻求最优射流参数,并结合清洁度清洗工艺,采用高压清洗提升阀体清洁度。以清洗试验平台和高压清洗喷嘴为研究对象,模拟实际清洗过程的射流环境。基于Realizable k-ε湍流模型和Mixture两相流模型,建立喷嘴清洗喷射的仿真模型,分析不同入口压力下的喷嘴流场特性。获得喷嘴流场参数的衰减规律和分布特性,建立入口压力与轴心动压、出口速度等的关系,以临界动压作为有效清洗的标准推导了最佳射流靶距和最大清洗范围,分析表明高压喷嘴具有良好的射流清洗性能,但清洗效率低,适用于针对性清洗。水射流清洁技术希望的切割深度是接近于零的,必须考虑射流与材料的相互作用。采用ABAQUS软件,基于耦合的欧拉—拉格朗日方法(CEL)结合JohnsonCook材料模型,建立水射流冲击阀体的流固耦合有限元模型。以射流压力和靶板结构作为变量,对水射流冲击特性进行研究,获得了不同清洗压力和不同靶板结构下,阀板受到的冲击压力和几何变形,确定了安全清洗参数,建立水射流与零部件相互作用的力学关系。针对自动变速器阀体的清洗要求,分析高压清洗设备工作原理,根据仿真分析选择最佳射流参数,并结合清洁度清洗工艺,对阀体进行高压清洗实验并测定清洗前后的阀体清洁度,检测结果为清洁度达到6级,表明高压清洗能够将阀体的清洁度提升到较高的等级。