论文部分内容阅读
荧光粉是LED器件制备的重要组成部分,为了获得高效的发光性能,近年来研究和报道了很多新型的荧光粉,其中硅酸盐体系荧光粉因种类繁多成为研究热点,具有作为LED用荧光粉的巨大潜能。本文在硅酸盐基质中引入多种稀土离子,变换晶体格位中的阳离子种类,采用XRD、SEM、荧光光谱、荧光寿命等测试手段,对所制备的荧光材料的物相、微观形貌和发光性能等进行了分析讨论,旨在研究开发出适合近紫外光激发的具有多光色的硅酸盐体系荧光粉。本文重点围绕以下几个方面开展研究工作:1)(Lu1-xYx)2SiO5:yCe3+和(Lu1-xYx)2Si2O7:yCe3+硅酸盐系列粉体采用高温固相法在还原气氛下分别合成了(Lu1-xYx)2SiO5:yCe3+、(Lu1-xYx)2Si2O7:yCe3+系列硅酸盐粉体。研究发现,Y3+取代Lu3+未改变基质的晶体结构,样品的相纯度高,为单斜晶系结构。(Lu1-xYx)2SiO5:yCe3+荧光粉的发光有两个发光中心,Ce3+取代Lu3+离子分布于6配位和7配位的8f位置,分别位于Lu1和Lu2上。(Lu1-xYx)2Si2O7:yCe3+荧光粉只有一个发光中心,Ce3+取代Lu3+离子分布于4g格位。两种荧光粉均具有宽谱激发带,Ce3+离子的5d能级到2F5/2和2F7/2能级的跃迁使得发射光谱可以高斯分解为两个发射峰。两种荧光粉的发光强度均在Ce3+的掺杂浓度为0.005时达到最大值,随着Ce3+离子浓度增加,产生浓度猝灭,发光强度降低。2)Na3LuSi2O7:RE3+(Ce3+,Tb3+,Eu3+,Dy3+,Sm3+)硅酸盐系列荧光粉采用高温固相法合成了Na3LuSi2O7:RE3+(Ce3+,Tb3+,Eu3+,Dy3+,Sm3+)硅酸盐系列荧光粉。在350 nm激发下,Na3LuSi2O7:Ce3+荧光粉的发射光谱为双峰结构的非对称光谱,最强峰位于418 nm,是由峰值为390、412、444和502 nm的四个拟合峰叠加而成,Ce3+占据四种不同的Na+格位。Na3LuSi2O7:Tb3+荧光粉的特征发射峰值分别为485、542、594和625 nm,其中Tb3+的5D4→7F5的强跃迁产生542 nm处的最强发射峰,对Na3LuSi2O7:Tb3+荧光粉的光致发光和阴极射线发光的发光性质进行了对比研究。Ce3+和Tb3+共掺的Na3LuSi2O7体系中,存在Ce3+→Tb3+的能量传递。在确定Ce3+离子最佳浓度的条件下,调节Tb3+离子的浓度,在色度坐标显示Na3LuSi2O7:0.05Ce3+,yTb3+(y=0~0.09)荧光粉的颜色从蓝光区域过渡到绿光区域。合成了Na3LuSi2O7:RE3+(Eu3+,Dy3+,Sm3+)荧光粉,系统研究了上述三种荧光粉的发光性能,在近紫外光激发下,对Na3LuSi2O7:Dy3+,Eu3+荧光粉中Dy3+和Eu3+的能量传递关系和发光性能进行了研究,并且实现了白光发射。3)NaCaGaSi2O7:RE3+(Ce3+,Tb3+,Eu3+,Dy3+,Sm3+)硅酸盐系列荧光粉采用高温固相法合成了NaCaGa Si2O7:RE3+(Ce3+,Tb3+,Eu3+,Dy3+,Sm3+)硅酸盐系列荧光粉,稀土离子取代Ca2+离子格位。单掺Ce3+的NaCaGaSi2O7样品中,其在330nm的近紫外区有很强的吸收,发射光谱是一个主峰位于380 nm的宽带光谱,归因于Ce3+的5d→4f跃迁,发射出很强的蓝光,得到的发光强度最高的样品是NaCaGaSi2O7:0.03Ce3+。NaCaGaSi2O7:Tb3+样品在377 nm激发下,发射峰值为542 nm,样品呈现强绿光,Tb3+浓度猝灭机理是偶极-偶极相互作用。系统研究了NaCaGaSi2O7:Ce3+,Tb3+、NaCaGaSi2O7:Dy3+,Eu3+和NaCaGaSi2O7:Dy3+,Sm3+荧光粉中Ce3+→Tb3+、Dy3+→Eu3+、Dy3+→Sm3+的能量传递机制,分别是偶极-偶极相互作用,偶极-四极相互作用和非辐射跃迁。NaCaGaSi2O7:Dy3+,Eu3+和NaCaGaSi2O7:Dy3+,Sm3+荧光粉均实现单一基质白光发射。