论文部分内容阅读
对膨胀管技术的实际工程进行分析,在分析膨胀管井下膨胀过程的大塑性变形基础上,结合薄壁圆筒的胀形和厚壁圆筒火炮炮筒自紧技术的力学模型,采用塑性力学理论建立了膨胀管井下膨胀过程的力学模型,并验证了模型能够较好的满足工程需要。膨胀管井下膨胀所需的膨胀力可按下式进行简化计算:F=2πtk(?)n〔r0’(1+f/sin a)/(n+1)+fL〕在力学模型的基础上,分析了膨胀管技术在复杂钻井和等井径井中应用存在的技术瓶颈,建立了全新的低成本大膨胀率膨胀管用钢的技术要求,即应具有较低的屈服强度、较低的屈强比、较高的抗拉强度、良好的塑性以及较高的均匀变形能力和加工硬化性能。遵循膨胀管用钢的技术要求,在先进钢铁材料合金化和结构/功能一体化、显微组织控制等学术思想指导下,通过成分优化、纯净化冶炼、组织细化、相变控制、强韧化匹配的方式,开发设计了采用低微碳含量、以Mn-Si合金化为主的、满足井下膨胀变形过程中对力学性能要求的低成本、低微碳、低合金铁素体马氏体双相钢07MnSi.利用材料现代分析方法OM、XRD、SEM、EDS、TEM以及万能试验机对通过不同临界区温度淬火的07MnSi低微碳低合金铁素体马氏体双相钢进行了组织结构和性能分析,利用EBSD分析了07MnSi低微碳低合金铁素体马氏体双相钢不同临界区温度加热淬火组织演变过程。结果证明:随着临界区淬火温度的升高,组织中马氏体体积分数逐渐增大,且两相组织的形态和织构的取向也发生了转变,强度逐渐增大。同时对该种双相钢的膨胀试验结果进行了分析,探索选取膨胀管用钢的最佳热处理工艺。采用Hollomon应力应变模型、Crussard-Jaoult分析方法(简称C-J分析)和修正的C-J(修正的Swift方程)分析方法等多种模型对不同临界区温度淬火处理的07MnSi双相钢的加工硬化行为进行了分析,发现该双相钢具有明显的双屈服现象,其应变硬化指数随着应变的增大而逐渐减小。基于细观力学的塑性本构理论基础,根据双相钢中两相分布的特点以及马氏体中碳含量变化和马氏体相变造成的内应力导致铁素体形变强化的影响,建立了水淬双相钢的流动应力模型。根据Eshelby等效夹杂模型和Mori-Tanaka平均场理论,采用Tomota分步法计算双相钢的应力-应变曲线。在理论模型的基础上讨论了淬火态双相钢细观组织结构及其各组分相性能与屈服强度、抗拉强度、加工硬化、均匀延伸等力学性能指标之间的关系,并对淬火态双相钢流动应力进行有效预测和分析。采用固定式膨胀锥对所设计开发的07MnSi铁素体马氏体双相钢制成的Φ219×12mm钢管分别进行了膨胀率为35%和50%的膨胀试验,膨胀锥锥角选为10。,均获得了成功,证明了该膨胀管用双相钢具有优良的膨胀性能。