面向食管癌文本的实体识别和关系抽取方法研究

来源 :安徽大学 | 被引量 : 0次 | 上传用户:zhangwenhan05
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着生物医学领域研究和信息技术的发展,与生物医学研究相关的文献、数据等资料呈爆炸性增长。海量的生物医学文献报道了特定生物分子(如基因、miRNA和lncRNA等)在食管癌发生与发展中的作用,例如促进或抑制食管癌发生、作为预后因子以及生物标志物等。上述信息对于食管癌早期诊断以及药物研发具有重要意义。但是这些信息分布零散,并且食管癌文本中包含相当多的特定专有名词和术语,所以在通用语言上提出的实体识别和关系抽取方法不能直接用于食管癌文本挖掘工作。因此本文做了如下研究工作:(1)提出了一种基于BioBERT的生物分子食管癌实体识别和关系抽取方法(BioBERT-BR2E)。模型框架主要由BioBERT预训练语言模型编码层、批标准化层、生物分子实体解码层以及食管癌实体解码层构成。模型的主体思想是先利用BioBERT编码层提取文本特征信息,并将隐层输出输入到生物分子实体解码层预测生物分子实体;然后将生物分子实体信息和隐层输出共同输入到后续食管癌实体解码层,每种关系类型对应一个尾实体解码层,根据关系类型预测出食管癌实体信息,得到最终的实体关系三元组(生物分子实体,关系类型,食管癌实体)。同时针对食管癌文本挖掘领域缺乏现成的训练语料,本文通过手工标注的方式构建了生物分子与食管癌关系抽取数据集。最后实验结果表明,BioBERT-BR2E可以在有效识别生物医学文献中的生物分子和食管癌实体的同时,还可以有效解决关系重叠问题,模型在相应的数据集上均取得了出色的表现。(2)开发了一个食管癌信息平台。现阶段,缺少专门体现生物分子和食管癌关系的资源信息平台,同时也没有可供生物分子和食管癌在线信息抽取的系统。因此本文基于上述构建的食管癌文本关系抽取数据集,以及深度学习网络模型搭建了一个生物分子和食管癌关系信息查询平台,为相关研究人员提供了便利。平台采用Python语言下的Django开发框架搭建,除了基本的注册登录功能之外,还有生物分子食管癌关系查询和在线信息抽取两大核心功能,分别用于检索生物分子和食管癌的关系以及信息来源的句子,以及对于用户输入的文本数据信息进行在线实体识别和关系抽取,找到存在的生物分子实体和食管癌实体以及实体之间的关系类型。
其他文献
近年来互联网金融蓬勃发展,因为其具有便捷高效等诸多优势,在吸引长尾客户和发展普惠金融方面能够弥补传统金融机构的缺点与空白,对传统商业银行盈利能力造成了一定的冲击,这给商业银行带来了强烈的危机感。本文结合作者的工作实践,分析了互联网金融发展对中行秦皇岛分行盈利能力造成的正负两方面影响,得出如下结论:互联网金融严重冲击了中行秦皇岛分行的存贷款利差收入,降低了盈利水平;同时体现了“鲶鱼效应”,倒逼中行控
学位
图像匹配作为视觉感知中的一个基础且关键的过程,一直是计算机视觉领域中的研究热点。现有的匹配算法主要围绕图像的局部特征展开,利用局部特征的可区分性和稳定性等特性建立特征匹配集合,但对于存在局部形变或视角变换的多物体图像以及具有光谱差异的异源图像,在匹配精度、鲁棒性方面仍存在一定的局限性。观察表明,针对多物体图像匹配,可通过挖掘匹配特征之间的局部一致性变换约束来确定正确匹配;而针对异源图像配准,应重在
学位
随着集成电路制造工艺的不断进步,芯片集成度与性能都获得了提升。然而,晶体管特征尺寸的大幅缩小也给集成电路的可靠性提出了巨大挑战。对于纳米级互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)集成电路,软错误是造成其故障的重要原因。在先进工艺下,纳米级CMOS锁存器等诸多器件对软错误中的多节点翻转(Multiple-Node Upset,M
学位
遥感场景分类(Remote Sensing Scene Classification,RSSC)是遥感图像领域的一个重要且活跃的分支。随着遥感技术和计算机科学技术的飞速发展,遥感场景分类在理论和实际应用中都取得了可喜可贺的成果。然而,由于遥感图像场景往往是由多种物体通过复杂多样的空间组合和关联形成的,所以RSSC依然面临着严峻的挑战。首先,除了全局信息外,局部特征对遥感图像的识别至关重要。由于CN
学位
近年来随着深度学习的发展,人体三维重建工作在神经网络的支持下,成为了新的研究热门,并涌现出了许多基于深度网络的方法,但这些人体重建工作往往要求在没有遮挡物的情况下对人体进行重建。然而,在现实生活中,由于人与物体的频繁交互运动,人被各种物体遮挡的情况是随处可见且不可避免的。当人体出现被遮挡的情况时,现有的方法往往不能够得到令人满意的重建结果。针对这个问题,本文提出了针对遮挡人体重建鲁棒性较好的基于多
学位
人脸面部表情是人类情感表达的重要方式之一。微表情是一种可以反应人内心真实情感的表情。在人们试图隐藏自己内心的真实情感时,微表情会自发的产生。微表情既无法抑制也无法模仿,可以作为判断人真实情感的重要手段。因此微表情在医疗健康,国家安全等方面具有广泛的应用前景。相比于宏表情,微表情的持续时间短,动作幅度低。这些特点导致通过人工对微表情进行检测和识别十分困难,因此对于自动微表情的分析有着紧迫的需求。微表
学位
近年来,深度卷积神经网络在各种计算机视觉上取得了突破性的进展,其应用范围也越来越广。然而,深度卷积神经网络需要强大计算能力、高存储空间和高内存占用的特性却严重阻碍着它的应用和发展,使得这些高性能的模型难以部署在一些资源受限的设备上,也无法部署在对实时性要求极高的系统中,如智能手机、树莓派、嵌入式AI系统等。通道剪枝是一个能够减小模型尺寸的研究领域,而为了更加有效地降低神经网络模型的资源占用,更小地
学位
自然图像抠图是图像处理和计算机视觉领域中一项充满挑战又十分重要的基础研究,具有广泛的应用价值。现有的自然图像抠图算法在抠图精确度以及复杂场景中的抠图方面存在一定的局限性,同一场景中不同区域的抠图难度存在不均衡的现象。研究发现,针对精细化抠图和复杂场景的抠图,可通过注意力机制提取并增强有效特征,结合多尺度侧边监督对抠图结果进行细化;而针对抠图中的不同区域抠图难度差异性大的特点,可基于注意力机制对抠图
学位
车辆图像精细化识别能够准确判断出图像中车辆的品牌、系列、年份,是支撑智慧交通系统的重要技术之一,能够缓解车辆保有量快速增加给交通管理部门带来的压力,使得城市治理更加高效。现有算法使用完整的车辆图像进行精细化识别,已经达到了较好的效果。但在城市交通复杂场景下车辆会被其他车辆或物体遮挡,以致于精细化识别算法所处理的车辆图像是不完整的,极大限制了算法性能。此外,利用检测算法从交通卡口摄像机拍摄到的全景图
学位
聚类可以在没有监督信息的指导下,将数据划分成不同的簇,使得相似的数据尽可能在同一个簇中,而不相似的数据被划分在不同的簇中。“物以类聚,人以群分”,在模式识别、医学诊断、生物学等领域中存在着大量需要将数据按一定规则划分的场景。因此,聚类成为无监督学习中一个被广泛关注的问题,一些经典的方法如K-均值、谱聚类、子空间聚类也得到了广泛的应用。聚类方法尽管操作简单,适用性强,但是由于缺少监督信息的指导依然存
学位