【摘 要】
:
炭基双电层超级电容器(EDLC)较低的电容储量限制着其应用拓展,而电容主要由炭电极的多孔结构和元素组成决定。因此开发具有合理孔分布及适量官能团的多孔炭电极可有效提高EDLC电容。纤维素碳含量高且表面官能团丰富,是一种极具潜力的可再生材料。本课题以滤纸作为纤维素源和炭前体,通过不同技术路线,制备了三种结构各异的纤维素多孔炭并应用于EDLC电极,具体研究成果如下:(1)通过对纤维素滤纸进行冻融再生、C
论文部分内容阅读
炭基双电层超级电容器(EDLC)较低的电容储量限制着其应用拓展,而电容主要由炭电极的多孔结构和元素组成决定。因此开发具有合理孔分布及适量官能团的多孔炭电极可有效提高EDLC电容。纤维素碳含量高且表面官能团丰富,是一种极具潜力的可再生材料。本课题以滤纸作为纤维素源和炭前体,通过不同技术路线,制备了三种结构各异的纤维素多孔炭并应用于EDLC电极,具体研究成果如下:(1)通过对纤维素滤纸进行冻融再生、CO2超临界干燥和N2热解处理,制备了由无序纤维连接而成的三维蜂巢结构纤维素炭气凝胶。其比表面积达327.6 m~2g-1,且具有良好的分级多孔结构。该炭气凝胶电极表现出194.0 F g-1的高电容。(2)以滤纸为前驱体,通过两步KOH炭化-活化法,制备了具有大比表面积(1619.9 m~2g-1)和高含氧量(15.91%)的三维蛛网型活性炭KAC。该活性炭电极的良好孔分布和适量氧官能团促进了体系内双电层电容和赝电容的协同增效,表现出优异的比电容(310.3 F g-1)。以其参与组装的对称电容器800-KAC-SSC也展现了较高的能量密度(8.25 Wh kg-1)。(3)通过CuCl2一步造孔法对滤纸进行活化蚀刻,制备了具有强自支撑性、高比表面积(1693.3 m~2g-1)和高炭产率(31.4%)的纤维素多孔炭纸Cu AC。该多孔炭纸在Cu Cl2的作用下保持了滤纸原先的纤维缠结结构,且具有发达的互通微孔通道,展现出独特的电容活性/自集流体双重属性。本文制备的纤维素多孔炭纸可直接作为电极,毋需添加任何助剂和外加集电器。以该多孔炭纸作为电极制备的对称电容器800-Cu AC-SSC能量密度高达12.54 Wh kg-1,具有巨大应用潜力。
其他文献
电容去离子(CDI)因成本低廉且高效,已成为一种极具前景的海水淡化技术。日益严峻的水资源短缺形势,使得探索先进材料对于提升CDI性能尤为重要。炭气凝胶(CA),具有比表面积大的优点,兼之成本低,是常用于研究的电极材料之一,为优化其电化学和电吸附性能,可以采取与其他材料复合的方法,以更好地满足应用需求。本文通过溶胶-凝胶法,将炭黑由NaClO氧化后,将其与间苯二酚-甲醛炭气凝胶(RF)进行复合,使得
走向融通的小学语文项目化学习以项目为载体,有着项目化的学习设计、组织实施与评价展示,强调以“融通”的思想来设计落实。其特征表现为“有内外融合的情境”“以综合性的言语实践为过程”“以高阶思维为驱动”“注重全过程的审美体验”。实施路径围绕项目学习的基本要素展开,更注重项目内容的结构化、真实情境的融合性、项目活动的完整性与评价方案的全面性。
致病细菌对人体的侵袭会引发一系列的感染,对人类的生命健康和财产造成巨大的威胁,因此对细菌的防治和杀灭是非常重要的。具有抗菌性能的材料的研发是解决细菌感染问题的方式之一。外部环境细菌的可以通过手、鼻、口等途径直接侵入人体引发感染,也可以通过导管等医疗器械植介入物引起相关感染。通常消毒液被作用于消灭外部环境的细菌,但常用的消毒液存在消毒作用时间短、性质不稳定、易对环境产生污染等问题,因此设计、合成具有
由于COVID-19病毒在全球的蔓延,主要是由聚丙烯(PP)无纺布制成的一次性口罩由于其更好减缓病毒传播的效果得到了广泛应用。但是这些大量的不可降解的一次性口罩仅通过填埋或焚烧处理,不仅消耗了大量的石油资源,还会对陆地和海洋的生态系统造成巨大的破坏。由于一次性口罩中的细菌和病毒不耐高温的特性,本文采用高温机械共混回收废弃的一次性口罩材料,赋予了回收材料更好的机械性能和额外的阻燃性能,探索了回收利用
聚酰亚胺(PI)纤维具有优异的力学、热学、介电以及耐环境等性能特点,在航空航天、防弹装备以及阻燃隔热等领域有着巨大的应用潜力。在长期服役期间,PI纤维会在载荷的作用下发生蠕变变形,甚至断裂,因此研究PI纤维的蠕变行为是必要的。本文首先通过一系列恒温定载蠕变实验对PI纤维的蠕变行为进行了研究;随后通过时间-温度叠加原理以及阶梯等温法对其长期蠕变行为进行了加速表征,得到PI纤维的长期蠕变行为曲线以及蠕
稳定且高效发光的功能有机硅材料在薄膜传感器等领域表现出广泛的应用前景。目前,构筑荧光有机硅材料最简便的方法就是将荧光分子物理地掺杂在有机硅基体中。然而,小分子荧光物质在基体中物理包埋产生的容易迁移析出的问题严重降低了器件的使用寿命。本论文从上述背景出发,提出了一种荧光物质大分子化的新策略,通过将荧光聚合物加入到有机硅基材中制备了耐迁移且高效固态发光的功能有机硅材料。主要制备了两类常用的聚集诱导淬灭
飞机轮胎生产技术大多被欧美等发达国家垄断,飞机轮胎已经成为中国航空业发展的“卡脖子”问题。飞机轮胎作为飞机起降过程中唯一与地面接触的部件,它很大程度上决定了飞机运行的安全性。由于飞机着陆瞬间特殊苛刻的工况条件,飞机轮胎胎面胶在高速、冲击载荷条件下的摩擦磨损行为和机理十分复杂,亟需澄清。针对上述情况,本论文采用新型磨损磨耗实验机,模拟飞机轮胎着陆时苛刻工况条件,以天然橡胶为基体,探究了不同材料组成对
聚酰亚胺(PI)是一种分子链内含有大量苯环和芳香杂环的化合物。作为一种性能非常优异的新型碳材料前驱体,PI可以用于制备电子散热领域广泛使用的高导热石墨薄膜、碳泡沫等。因此,以PI纤维作为前驱体也有制备高性能碳纤维的潜力。本论文针对课题组前期研究中PI基石墨纤维取向度较低、性能较差的问题,通过采用化学亚胺化和热处理中施加牵伸的方法有效改善和提高了PI基石墨纤维的微观结构和性能。本文主要从以下3个方面
音乐是小学阶段重要的艺术、素质教育课程,能够有效陶冶学生情操,培养学生情感。但是,传统小学音乐教学活动过程中,主要以灌输相关基础理论知识、指导学生视唱等方式为主,不利于学生音乐学习兴趣的培养。因此,本文主要研究小学音乐"大概念"下的大单元教学措施,重新组建课程内容,展现出知识的连接性,旨在引导学生主动探究音乐,培养学生综合素养。
“双减”政策提出要减轻学生的作业负担和培训负担,那么势必要提高学校教育的质量。针对这一要求,各个学校正在积极探索更实用的教学方式。随着现代化信息技术的发展,多媒体在教学活动中的地位越来越突出,它在习作讲评课中的有效运用,使教学方式发生了革命性的变化,充分体现了讲评课的魅力,达到了启智课堂的教学目标,突出了学生的主体地位,同时也促进了教师专业技术水平的发展。