论文部分内容阅读
纤维素纳米晶体(Cellulose nanocrystals,CNs)是一种新型的生物质基纳米材料,因具有高纯度、高结晶度、高杨氏模量、高强度等特性,加之具有生物材料的轻质、可降解、生物相容及可再生等特性,适于作为高性能复合材料的填充物。纤维素纳米晶体通过对其表面进行化学功能化改性,以及与无机功能化纳米材料复合,被赋予了更多的性能,也使其在众多领域中显现出巨大的应用前景。论文研究了纤维素纳米晶体的制备及其功能化改性,并以制得的纤维素纳米晶体为模板,分别制备了纳米Ag、Ag-Pd合金和Fe2O3与纤维素纳米晶体的复合物,对复合物作为高分子材料的多功能填料、DNA电化学生物传感器标记物及水处理吸附材料进行了详细研究。主要创新点如下:采用碱溶胀法对纤维素进行预处理,通过TEMPO/NaClO/NaBr氧化制备了纤维素纳米晶体;以纤维素纳米晶体为模板,制备纤维素纳米晶体与Ag-Pd合金和Fe2O3的复合物,并将复合物分别应用于DNA电化学生物传感器标记物及水处理吸附材料。采用硫酸催化水解法,以微晶纤维素(microcrystalline cellulose,MCC)为原料,制备尺寸范围在长100~200 nm,宽10~20 nm的纤维素纳米晶体粒子,纤维素纳米晶体的晶型与原料MCC一致。并用TEMPO/NaClO/NaBr氧化体系对制备的纤维素纳米晶体进行表面羧基化改性,羧基化改性纤维素纳米晶体的晶型同样未发生变化。另外,在非酸体系中,以TEMPO/NaClO/NaBr氧化体系对碱预先溶胀的MCC进行氧化处理,制备了同样形貌及尺寸范围的纤维素纳米晶体粒子。以羧基化改性纤维素纳米晶体(carboxylated cellulose nanocrystals,CCNs)为载体,通过液相化学法制备了CCNs与Ag纳米粒子(Ag nanoparticles,AgNPs)的复合物(CCNs/AgNPs),并分别与水性聚氨酯(WPU)和聚乙烯醇(PVA)复合制备功能化高分子复合物。分析结果显示WPU/CCNs复合物的玻璃化转变温度和热稳定性随着CCNs添加量的增加而升高,CCNs的添加使得WPU复合膜的拉伸强度出现先升高后降低的趋势,复合物的断裂伸长率降低。与WPU/CCNs复合物不同的是,CCNs的添加使PVA复合物的玻璃化转变温度降低,热稳定性能增强,拉伸强度明显提高。此外,AgNPs的添加使WPU复合物和PVA复合物对大肠杆菌和金黄葡萄球菌表现出良好的抗菌性能。利用纤维素纳米晶体表面的羧基,在乙基-3-(3-二甲基氨基丙基)碳二亚胺(EDC)和N-羟基琥珀酰亚胺(NHS)作用下与探针DNA(probe DNA)分子上的-NH2反应生成酰胺键(-CONH-),使探针DNA与CCNs/AgNPs复合物连接,制备成具有电化学活性的CCNs/AgNPs-probe DNA探针。CCNs/AgNPs-probe DNA探针与目标PAT基因和非互补DNA的电化学检测结果表明,以CCNs/AgNPs作为DNA标记物的电化学生物传感器对PAT基因片段的检测具有很好的选择性,Ag的电化学信号与PAT基因片段浓度在1.0×10-10 mol/L到1.0×10-7 mol/L范围内呈良好的线性关系,检测限为2.3×10-11 mol/L。结果表明,纤维素纳米晶体可用于DNA生物分子固定;CCNs/AgNPs作为DNA电化学生物传感器中探针DNA的标记物,制备的电化学生物传感器可用于PAT基因片段的检测。使用羧基化改性纤维素纳米晶体水分散液作为反应体系,以硼氢化钠为还原剂,采用共还原沉淀法制备了Ag-Pd合金纳米粒子。合金粒子的平均粒径小于AgNPs和钯纳米粒子(Pd nanoparticles,PdNPs)的平均粒径,且随着Ag含量的增加,合金粒子的平均粒径减小。CCNs/Ag-Pd复合物作为标记物与探针DNA结合,经探针DNA与目标DNA发生杂交反应后,可同时产生Ag和Pd的电化学信号,表明CCNs/Ag-Pd复合物可作为标记物用于DNA电化学生物传感器。采用水热法,以纤维素纳米晶体为稳定剂制备了不同形貌的氧化铁纳米粒子。通过TEM、XRD、FT-IR对纤维素纳米晶体与氧化铁纳米粒子(CNs/Fe2O3)复合物的形态进行了表征。将制备的CNs/Fe2O3复合材料作为吸附材料用于水处理,同时还考察了试剂Fe2O3、MCC和纤维素纳米晶体的在水体系中的吸附性能。选取金属阳离子Cd2+、Pb2+和Ni2+,阴离子Cr2O72-、AsO43-和PO43-作为吸附性能研究对象。结果表明,四种吸附材料对几种离子均有一定的吸附性能。相比于单一的吸附材料,由于纤维素纳米晶体和Fe2O3各自吸附性能的协同效应,CNs/Fe2O3复合物对于几种离子Pb2+、Cd2+、Ni2+、Cr2O72-、AsO43-和PO43-均具有很好的吸附性能。