论文部分内容阅读
关于粘性不可压缩流动问题的数值离散方法研究一直是计算数学研究的热点.Navier-Stokes方程是粘性不可压缩流体问题的基本方程,而Stokes方程是Navier-Stokes方程的定常形式和线性化,对它的数值离散方法研究具有典型性和普遍性意义.Brinkman方程是描述粘性不可压缩流体在渗透系数快速变化的复杂多孔介质中的流动方程,对它的数值离散方法的研究也非常重要.混合有限元方法是研究粘性不可压缩流动问题的一种常用的数值离散方法.由于传统的混合有限元方法需要有限元空间满足inf-sup条件,这个条件限制了工程上非常好用的低阶元的应用.除此,传统混合有限元方法对网格剖分单元的形状要求比较严格,一般只能是三角形或四边形(n=2)单元.这对实际应用中有限元空间逼近满足稳定性条件和复杂区域边界问题求解上带来困难.粘性不可压缩流动问题的数值解严格满足不可压缩条件对解的稳定性、收敛性具有重要意义,而传统的混合有限元方法很难构造无散的有限元格式.为了克服传统混合法遇到的困难,近年来,对粘性不可压缩流动问题的数值离散方法研究转向于非标准的有限元方法的研究,如间断有限元方法、杂交间断有限元方法、弱Galerkin有限元方法等.这些方法的优点在于网格剖分灵活、容易满足稳定性条件、易于构造满足无散的有限元格式.本文的第一部分工作主要研究两类粘性不可压缩流动问题-Stokes方程和Brinkman方程的弱Galerkin方法,分别构造了全局无散的弱Galerkin有限元离散格式,证明了该离散格式的稳定性,得到了与粘性系数一致的误差估计,并用数值算例进行验证.本文的第二部分工作主要面向Maxwell方程组.Maxwell方程组是电磁学的基本方程组,对Maxwell方程组的数值计算一直是计算电磁学的热点问题.时域有限差分方法(Finite-Difference Time-Domain method,简称为FDTD)是最受欢迎的数值方法之一.但它是条件稳定的,即时间步长和空间步长需要满足Courant-Friedrichs-Lewy(CFL)条件.因此当解决高维问题或实际问题要求空间步长很小时,时域有限差分方法的计算量是巨大的,有时候甚至不可实现.因此各种无条件稳定的差分方法被相继提出,如方向交替时域有限差分方法(Alternating Direction Implicit Finite-Difference Time-Domain Method,简记为ADI-FDTD)、分裂时域有限差分方法(Split Finite-Difference Time-Domain method,简记为S-FDTD)等.另一方面,电磁场在传播过程中的能量变化也是计算电磁学研究的一个重点.因此,对无损介质中的Maxwell模型构建稳定的、能量守恒的FDTD方法是具有实际意义的.我们的工作是研究二维Maxwell方程组的时域有限差分方法.其一是针对二维Maxwell方程组构造了两种不同精度的分裂时域有限差分格式,对格式的稳定性进行分析.其二是针对无损介质中Maxwell方程组一种时间4阶的ADI-FDTD格式的能量进行分析.本文的主要结构如下:在第一章中,介绍粘性不可压缩流动问题及Maxwell方程的主要背景以及相关数值离散方法概述.在第二章中,简要介绍本文用到的Sobolev空间、有限元方法分析过程中重要的公式以及重要的定义.在第三章中,针对Stokes方程提出一种改进的弱Galerkin有限元方法.该方法的速度和压力有限元空间在单元内部选择P6)()/P6-1)()(6)≥1),单元边界上速度函数取值于0(??)连续的函数空间.本文证明了改进的方法同样是稳定的,且保持无散的性质,能得到与粘性系数一致的误差估计.最后数值试验的结果展示改进后的方法比原来的方法具有更少的自由度,执行效率更高.在第四章中,针对定常的Brinkman方程提出一种新的弱Galerkin有限元格式.该格式基于一种新的变分格式,并且弱Galerkin有限元格式的数值解满足不可压缩条件,很好的保持了原方程解的物理性质.文中证明了格式的稳定性,推导了一系列的误差,得到与雷诺数无关的误差估计.最后给出数值算例验证理论结果.在第五章中,首先针对磁导率不为零的二维麦克斯韦方程组进行研究.用算子分裂的方法结合插值公式对其构造了两个不同精度的差分格式TS-FDTDI和TS-FDTDII,并用Fourier方法对格式TS-FDTDII的稳定性进行分析.其次我们对无损介质中的二维Maxwell方程组(TE问题)的一种时间四阶ADI-FDTD方法的能量进行分析,推导了该格式的数值能量等式.对能量等式中的两个扰动项进行分析,得到了该格式的能量是渐近守恒的.最后用数值算例验证了理论分析结果.