论文部分内容阅读
本文主要介绍了竹材原态多方重组单元的内涵及加工工艺,研究了竹材原态多方重组单元的物理、力学性能,探索了竹材原态多方重组单元的优化指接工艺,研制了竹材原态多方重组单元指接设备,建立了一条竹材原态多方重组单元示范生产线,并对竹材原态多方重组单元及其设备的社会价值和经济效益进行了评估。本研究可推动竹材原态多方重组单元的工业化生产,确定竹材原态多方重组单元生产线主要设备的关键性技术参数及工业化生产技术方案,为竹材原态多方重组材在建筑领域的推广及应用提供技术支持。本论文的主要结论如下:1)竹材原态多方重组单元经过蒸煮、干燥等系列工艺处理后,其颜色会变深。具体表现为:与原竹相比,竹材原态多方重组单元的颜色由黄白色变成咖啡色。其中明度参数L*相对于未处理过的毛竹会下降,降幅约25.32%;红绿轴色品指数a*呈现向红轴变化的趋势,变化幅度为19.43%;黄蓝轴色品指数b*呈现出向蓝轴变化的趋势,变化幅度为25.4%,竹材表面的颜色开始向黄蓝轴的中心轴方向靠拢。竹材原态多方重组单元的综合色差△E*为9.42,其颜色变暗;2)竹材原态多方重组单元经过加工工艺处理后,尺寸稳定性能显著提高。与毛竹相比,竹材原态多方重组单元的气干体积和全干体积下降。其中气干体积干缩率相对提高了22.48%,全干体积干缩率相对提高了22.52%;气干体积湿胀率相对提高了28.25%,吸水后体积湿胀率相对提高了19.31%。对气干体积干缩率、全干体积干缩率、气干体积湿胀率、吸水后体积湿胀率进行方差分析,结果表明,试验数据具有统计学意义,两者均表现为显著性差异;3)通过对竹材原态多方重组单元实验室及工厂试验结果进行研究分析,探索到竹材原态多方重组单元的优化指接工艺参数为:指接端压10MPa、指长15mm。此指接工艺条件下加工出的竹材原态多方重组单元外形美观,强度较高,能满足生产需要;4)在本实验端压范围内,竹材原态多方重组单元的抗弯强度、顺纹抗压强度及顺纹抗拉强度均随着其端压的增加而增大。指长为12mm时,抗弯强度随着端压的升高可相对提高15.85%,顺纹抗压强度可相对提高18.91%,顺纹抗拉强度可相对提高13.58%;指长为15mm时,抗弯强度可相对提高11.06%,顺纹抗压强度可相对提高17.1%,顺纹抗拉强度可相对提高17%;5)对竹材原态多方重组单元的力学性能做可重复双因素方差分析,结果表明:竹材原态多方重组单元力学性能的F值均为正数,且在α=0.01水平上,P<0.001,数据具有统计学意义。指长和端压对竹材原态多方重组单元的抗弯强度影响表现为极显著,指长和端压的交互作用对其抗弯强度影响不显著。指长对其顺纹抗压强度影响较为显著,端压及两者的综合效应对其顺纹抗压强度影响均不显著。指长和端压对其抗拉强度影响均显著,两者的交互作用对其影响不显著;6)对竹材原态多方重组单元的力学性能做回归分析,得出其抗弯强度、顺纹抗压强度、顺纹抗拉强度与指接端压(X1)和指长(X2)之间的数学回归模型分别为=4.796X1+6.95X2+53.137(R2=0.453)、=3.925X1+4.039X2+37.148(R2=0.296)、=2.845X1+4.33X2+47.059(R2=0.184);对以上三个模型进行F检验可知,Pr>F,F<0.01,即说明拟合效果极显著。利用上述三个模型,可以预测出在一定条件下竹材原态多方重组单元的力学性能变化;7)本文研究了竹材原态多方重组单元指接设备的整体设计方案及主要机构组成,并设计了液压、气压系统,开发了配套的卡具及加热系统。此设备本着绿色、环保、节能的原则,采用了机械最优化设计方法,使设备具有简单实用、可靠性高、便于操作和维护等特点,既降低了人工劳动强度,又提高了生产效率,可以达到竹材原态多方重组单元的规模化生产要求;8)参照国标GB/T50344-2004《建筑结构检测技术标准》,对竹材原态多方重组材进行了力学性能检测,结果表明,竹材原态多方重组材的抗弯力学强度为20MPa。在抗弯强度破坏试验过程中,靠近下端的竹材单元中间指接部位的胶粘剂被撕裂,竹材指榫错开,局部破坏。竹材原态多方重组材顺纹抗压强度为32.64MPa。在顺纹理抗压破坏试验过程中,指接部位存在缺陷的竹材单元最先出现破坏,表现形式为竹材原态多方重组单元指接部位指榫断裂,且由内向外炸开。竹材原态多方重组材的力学性能强度基本达到结构材用于承重场合的标准;9)本项目实施后,能提高竹材的经济附加值,增加竹农的经济收入,促进竹产区的经济发展。同时,对于提升我国竹材加工利用及其装备水平,保护森林资源,缓解木材供需矛盾,推行竹产业节能减排、低碳模式,改善居住及生存环境将发挥积极作用。