复杂光照环境下图像增强算法的研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:qinpeizhen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
实际生活中采集的图像由于光照环境、图像采集设备、拍摄人员的不稳定性通常存在不同程度的低光照或光照不均匀等情况,制约了其在跟踪和检测等计算机视觉任务中的作用。因此通过图像增强算法提高图像的对比度和信息丰富程度,并降低噪声具有重要的现实意义。现有的图像增强方法往往存在亮度提升不明显、亮度提升过强、图像暗区域细节恢复不完全、图像亮区域细节丢失等问题。针对这些问题,本文提出了两种图像增强算法分别实现亮度的自适应提升和光照不均匀图像的细节恢复。本文的主要研究内容和成果如下:1.提出基于自适应调节卷积的图像增强方法。所提方法首先构造一个包含两种不同照度(较暗/极暗)的低光照图像数据集。然后利用照度较低的图像对基础增强网络进行训练,分别从低频内容、高频细节和图像整体三个层面提高图像质量。之后固定基础增强网络的参数,通过引入自适应卷积模块得到基于自适应调节卷积的图像增强网络,并利用照度极低的图像更新自适应卷积模块的参数,提高网络对不同光照程度图像的适应性。对不同光照程度的低光照图像增强的实验结果表明,所提方法结果优于六种代表性方法,有效提升了极暗光照图像的亮度,避免了对较暗光照图像过度增强的问题,提高了图像的色彩饱和度,并且能够恢复图像中的细节。2.提出基于视网膜理论(Retinex)分解和自适应伽马校正的低光照图像增强方法。以提升图像的亮度、增强图像的细节信息为目的,本文提出一种包含图像分解和图像重建两个阶段的图像增强方法。在图像分解阶段,所提多尺度分解网络基于Retinex理论将图像分解为光照层和反射层,分别包含图像的亮度信息和细节信息。在图像重建阶段,分解得到的光照层经过自适应伽马校正网络得到亮度自适应优化且结构光滑的校正光照层;分解得到的反射层经过细节增强网络得到细节更加丰富且色彩饱和度提高的反射层。校正后的光照层和增强后的反射层融合后得到最终的重建图像。定量和定性实验表明,所提方法优于六种代表性方法,能够有效处理复杂光照图像,对不同照度的低光照图像都有较好的增强效果,能够提高图像对比度、恢复图像的细节、去除干扰噪声。
其他文献
报纸
近年来,三维模型分类和检索任务已成为多媒体领域和计算机视觉领域中的一项研究热点。随着深度学习技术的蓬勃发展,各种高性能的深度学习模型被提出并广泛使用。这些深度学习模型关注于不同的三维模型表示形式,例如点云、多视图、全景视图等等,均表现出了卓越的性能。但是,这些方法都忽略了一个重要的信息,即相同的三维模型在不同的模态表示场景下的多模态信息。本文提出了一种创新性的多模态融合网络来解决三维模型数据的分类
学位
报纸
报纸
三维目标检测是场景理解任务中的基础问题之一,在智能驾驶和机器人感知等领域有着广泛的应用前景。基于不同传感器数据的三维目标检测算法在性能、效率以及应用场景等多个方面均存在差异。能获取精确距离的激光雷达和具有较高分辨率的双目相机常作为主要的感知设备应用于智能驾驶系统。激光雷达通过发射特定波长的激光束并接收目标回波以获取场景的三维点云。当前基于点云的三维目标检测算法存在两个问题。一是在点云的特征提取网络
学位
视频片段检索旨在依据给出的查询信息,在未经剪辑的长视频中检索出与查询内容相关的视频片段。本文的工作使用一段视频作为查询信息,给定查询视频,可以从参考视频中提取出与查询视频具有语义相关性的内容片段,并确定其起止时间。这项技术被称为基于视频查询的视频片段检索。在实际应用中,这项技术可以更智能的为人类提供视频选择,有效地减少用户浏览相关感兴趣视频的时间,还可以应用于视频监控和基于视频的人员重识别任务等其
学位
水下图像存在颜色失真、细节模糊、对比度低等问题,直接影响水下目标识别与跟踪等工作,严重影响了计算机视觉系统在海洋研究中发挥效用,水下图像清晰化研究具有重要的理论意义和应用价值。目前基于有监督学习的水下图像复原方法通常需要高质量的清晰图像作为参考,而其在现实的场景中难以获取;使用合成数据作为训练数据集的复原方法则难以适用于真实场景。基于此,论文提出两种基于无监督学习的水下图像复原方法,具体工作如下:
学位
水下图像承载着水下环境的重要信息。由于受到光吸收和散射的影响,水下图像存在颜色失真、对比度低、模糊、光照不均匀等明显的质量退化问题。退化的水下图像直接影响其在水下目标检测、水下场景理解、水下三维重建等方面的进一步应用。因此,关于提高水下图像质量的研究具有重要意义。随着深度学习技术的快速发展,基于弱监督学习的水下图像增强方法受到广泛的关注,但现有的增强方法处理后的水下图像仍存在色偏、细节模糊等问题。
学位
从天气预报到股指预测,时间序列预测在方方面面都起着至关重要的作用。然而,实际场景下的时间序列往往具有极强的非线性和较低的可预测性,传统方法往往差强人意。同时,随着社交网络的发展,越来越多的用户在网络上表达自己的观点,这些观点中的情感信息可以辅助解决相关的预测问题。在目前的研究中,用户的情感信息尚未得到充分利用。为了实现及时准确的预测,本文出了情感分析和深度学习相结合的方法——融合情感分析的时间序列
学位
显著性对象检测旨在着重标示图像或视频场景中在语义层面上引人注意或感兴趣的区域或对象。显著性对象检测可以作为预处理步骤,为其他复杂的计算机视觉应用任务提供帮助。当前,它已经被广泛应用于目标跟踪、图像分割、目标检测等任务中。显著性检测目前依旧是具有挑战的计算机视觉任务,因为具有复杂形状和任意大小的显著物体通常难以精确地检测,尤其是在杂乱的背景和复杂的场景中。由于考虑到基于单一层次特征预测显著物体的缺陷
学位