论文部分内容阅读
飞行模拟器能够在地面逼真、安全地再现飞机的空中飞行行为,是航空业新机研制、飞行训练不可或缺的模拟设备。而我国对于飞行模拟器,尤其是高等级飞行模拟器的研制和技术储备均远远落后于国外发达国家。在当前国家大力发展大飞机项目的背景下,开展飞行模拟器关键技术研究服务于大飞机的研制和飞行训练势在必行。飞行模拟器以飞机及机载系统的实时仿真模型为主体,航空发动机作为飞机的心脏,其仿真模型是模拟器的核心,直接决定着飞行模拟的逼真度和模拟器的鉴定等级。由于航空发动机不仅是一个多变量、非线性的气动热力系统,而且其工作条件和工作状态复杂多变,因此发动机及其控制系统建模与仿真是一项非常具有难度和挑战性的任务。本文旨在建立高逼真度的、实时的、完整的发动机及其控制系统模型,并开发一套结构清晰、维护方便、易于扩展的发动机仿真软件,以实现飞行模拟器动力系统的实时仿真。为了实现上述目标,首先研究了适用于飞行模拟的航空发动机模型的特征,提出了飞行模拟器发动机及其控制系统仿真的基本建模原则,为建立具有高精度、实时性、扩展性和灵活性的动力系统模型进行有效的指导。采用相似理论和部件级建模方法建立了发动机及其辅助系统的实时性能模型,包括转子动力学、热力学模型,传感器、作动器动力学模型和活门动态模型,相比单纯的发动机稳、动态性能模拟,极大地拓宽了模拟范围、提高了模拟精度,满足了飞行模拟的应用需求。在正常状态模型的基础上通过构建故障因子建立了发动机故障模型,克服了采用气动耦合原理和逐级模拟技术建立故障模型的复杂性,所建立的实用简化的故障模型不仅提高了仿真的实时性,而且逼真地再现了故障性能、故障逻辑和效应,满足了飞行模拟器发动机故障模拟的要求。其次,采用模块化技术和精细化建模方法建立了航空发动机控制系统功能模型,研究了提高仿真精度和实时性的处理方法。通过对实际的控制系统进行功能性分解,确定了功能模型的接口关系和组成结构,建立了功率管理、燃油流量控制、引气流量控制、极限控制、反推控制、起动逻辑等功能模型。在建模过程中虽然对次要功能进行了简化处理或忽略,但实施发动机控制必须的基本、重要的控制功能被完整无缺的保留了下来,控制系统仿真结果验证了控制系统功能模型的有效性。再次,采用面向对象技术和应用框架技术建立了发动机及其控制系统的仿真模型。为了避免传统的面向过程的开发方式在大型软件设计过程中造成的可读性差、维护困难的弊端,采用面向对象技术与MATLAB相链接的方法进行发动机仿真系统的软件设计。按照由“总”到“分”的建模路线和层级式的设计模式构建了实时仿真模型和动力系统仿真模型的类属层次结构,定制了动力系统仿真模型的运行框架。对象类之间的继承性、多态性、聚合和关联机制保证了仿真系统结构清晰、层次分明、易于扩展和维护,统一的运行框架既增强了建模的灵活性又实现了仿真模型的稳定、高效运行。最后,剖析了仿真逼真度的内涵,构建了多层次的发动机仿真逼真度的评价体系,研究了仿真逼真度评价的定量验证法和定性验证法。在具有分布式仿真体系结构的飞行模拟器上开展了发动机及其控制系统仿真逼真度的客观定量验证、主观定性评价和仿真实时性验证,结果表明了发动机及其控制系统数学模型的准确性和合理性,以及面向对象的仿真模型的实用性和优越性。相比国外大公司使用专用设备进行飞行模拟器的研制,采用当前主流PC机配合成熟的商用软件更具成本上的优势和研发的灵活性,为高等级飞行模拟器的国产化进行了积极的尝试和有益的探索。