论文部分内容阅读
在气化炉洗涤冷却室内、污水的气浮处理以及煤的高效浮选等过程中,均存在气体穿越固液两相液池的流动过程。在气体穿越固液两相过程中气体以鼓泡的形式存在。在该过程中,气泡会对固液两相产生扰动,颗粒会被推挤,并且颗粒会出现沉降、悬浮等运动分离现象。显然气体穿越固液两相流动过程是一个复杂的、非稳态的、多尺度耦合的多相流动过程,想要掌握气体穿越固液两相过程中的流动特性以及了解不同因素对气体穿越固液两相过程的影响从气泡行为以及颗粒运动入手是很有必要的。因此,本文将针对该过程中气泡和颗粒的运动行为特性、颗粒的运动分离特性展开研究,以期揭示其内在规律,为工业生产以及工程实际应用提供理论指导。本文建立了气体穿越固液两相过程的物理模型;采用Euler-Euler双流体模型作为数学模型;通过与实验结果的对比,验证了数学模型的合理性;利用数学模型,对气体穿越固液两相过程进行模拟,对不同条件影响下的气泡和颗粒的运动行为特性进行研究;对气体穿越液固两相过程中的液固分离特性进行研究。对气体穿越固液两相过程中的气泡和颗粒运动行为特性研究从颗粒粒径、入口气速、气泡直径、管口浸没方式等条件下进行。结果表明,在入口气速相同的条件下,随着颗粒粒径的增大,三种浸没方式(底部浸没方式、侧部浸没方式和顶部浸没方式)下的气体体积分数在固液两相液池中减小;底部浸没方式下,气泡Y方向速度在颗粒粒径为20μm时最小。随着入口气速的增加,三种浸没方式(底部浸没方式、侧部浸没方式和顶部浸没方式)下气泡的Y方向速度及体积分数在增加。顶部浸没方式下,气泡Y方向速度随着气泡直径的增大而减小,气体体积分数随着气泡直径的增大而增大,其他两种方式下则与之相反。三种浸没方式(底部浸没方式、侧部浸没方式和顶部浸没方式)下的颗粒Y方向速度和颗粒体积分数随颗粒粒径的增大而减小;颗粒Y方向速度随着气速的增大而增加,颗粒体积分数随着气速的增大而减小;底部浸没方式和顶部浸没方式下,颗粒Y方向速度随着气泡直径的增大而增大;底部浸没方式和侧部浸没方式下,颗粒体积分数随着气泡直径的增大而增大。在底部浸没方式和顶部浸没方式下,气泡和颗粒的Y方向速度及体积分数在液池内沿径向呈对称分布。为了掌握气体穿越固液两相过程中的液固分离特性,研究了颗粒分离演变过程以及颗粒浓度随时间的变化规律,并发现气泡直径和浸没方式对液固分离特性的影响。研究发现,粒径为500μm的颗粒在液池中以沉降为主,受气体扰动并不明显;粒径较小的颗粒(5μm、20μm)在液池中以悬浮为主,沉降现象并不明显,且粒径为5μm的颗粒受气体扰动较为明显;粒径100μm的颗粒在液池中沉降和悬浮现象都存在。随着气泡直径的增大,侧部浸没方式下,固体颗粒浓度差别最明显。在底部浸没方式、侧部浸没方式和顶部浸没方式下,当颗粒粒径为100μm和500μm时颗粒体积分数差别不大,液固分离效果差别不明显。