基于β-羟基酯键的橡胶/纤维素纳米晶复合材料的制备与性能研究

来源 :北京化工大学 | 被引量 : 0次 | 上传用户:sanye8879c
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了减轻传统硫化橡胶材料对环境的负担,并获得可循环回收的橡胶基复合材料,本研究将β-羟基酯交换键引入到弹性体复合材料中。本课题通过引入羧基化的纤维素纳米晶来制备和表征含有β-羟基酯交换键的橡胶基复合材料。(1)将环氧大豆油(ESO)作为交联剂引入羧基丁腈橡胶(XNBR)/TEMPO氧化纤维素纳米晶(TO-CNC)复合材料中,并成功制备了ESO固化的XNBR/TO-CNC复合材料,其β-羟基酯动态共价键在ESO的环氧基和XNBR或TO-CNC的羧基之间形成。CNC的TEMPO氧化反应、β-羟基酯的形成被下述表征所验证,如FTIR、电导率滴定、元素分析、硫化曲线。TO-CNC在复合材料中表现出良好的分散性,并且ESO固化的XNBR/TO-CNC弹性体有明显的机械增强作用,例如,当加入15份TO-CNC时,其拉伸强度比未添加CNC的样品高237%。此外,这种复合材料也显示出良好的重塑能力和再加工性。总之,这项工作为制备绿色交联弹性体/生物基复合材料提供了一种新的方法,克服了传统硫化橡胶无法回收的瓶颈。(2)将三元乙丙橡胶(EPDM)侧链中的双键改性为环氧基团,得到环氧化的EPDM。以纤维素纳米晶为原料,通过DDSA改性在纤维素纳米晶的表面引入含有羧基的侧链,改性的纤维素纳米晶(DDSA-CNC)不仅可以用作环氧化EPDM的填料,而且还可以作为交联剂。并且,在EPDM与DDSA-CNC的界面上生成β-酯动态交换键。由此制备的复合材料,可以通过酯交换反应重新排列网络拓扑结构,从而使复合材料具有类似vitrimer的行为。相比于硫磺硫化的样品,EPDM/CNC复合材料表现出更高的断裂伸长率,约为硫磺硫化样品的7倍。
其他文献
有机太阳能电池具有质轻、制备工艺简单、成本低廉、可柔性制备以及可以大面积制备等优点,受到人们的广泛关注。由电子给体和电子受体组成的活性层是有机太阳能电池的核心结构,其作用是进行光电转换。本文以活性层材料中的电子受体为研究对象,设计并合成了一系列非稠环电子受体。将这些受体材料分别应用于本体异质结和单组分双缆共轭聚合物电池中,表征其光伏性能并系统地研究了非稠环电子受体材料的结构和电池性能之间的关系。本
学位
聚偏氟乙烯(PVDF)分别与不同熔点的两种结晶性聚酯,包括聚己二酸丁二醇酯(PBA)和聚丁二酸丁二醇酯(PBS),以及非结晶性的聚甲基丙烯酸乙酯(PEMA)共混制备超薄膜,通过熔体结晶培养了PVDF单晶、单晶聚集体、树枝晶及雪花状晶体。利用光学显微镜、原子力显微镜、及透射电子显微镜系统探究了薄膜厚度、结晶时间、结晶温度和共混质量比对超薄膜结晶行为的影响规律。主要研究结果如下:1.在PVDF与两种结
学位
锦/棉混纺织物(NYCO)兼具有尼龙纤维和棉纤维的优势,棉纤维柔软舒适、透气吸湿;尼龙纤维耐磨性好、强度高、回弹性高和耐化学稳定性。然而无论是棉纤维还是尼龙纤维都非常易燃,锦/棉混纺织物由于“烛芯效应”更易点燃,从而引起更大的火灾危害,严重影响人民生命财产安全,也限制其在家居家纺、军队制服、交通座椅等领域中的应用。因此,面对锦/棉混纺织物需求量大,阻燃要求高的特点,开展环保耐久阻燃锦/棉混纺织物的
学位
光聚合作为一种环境友好的绿色技术,基于固化速度快、低污染、节能、产物性能优异等优势被广泛研究。随着光聚合技术的发展逐渐趋向全面化,硫醇-烯烃光聚合基于多方面优势引发了业内研究和探索的浪潮,其在光固化领域的应用也得到了蓬勃的发展。但是,差的储存稳定性导致硫醇-烯烃光聚合技术的应用受到限制,无法满足实际大规模工业发展的需求。对于特定的硫醇-烯烃体系,其反应机理也尚不明确,缺乏足够的研究。虽然已有多种报
学位
随着人们对便携式电子设备及柔性可穿戴医用设备需求的急剧增加,较低能量密度的商业化石墨锂离子电池已远远不能满足快速增长的市场需求。在新兴的负极材料中,具有合金嵌锂机制的硅负极材料因其最高的能量密度被认为是锂离子电池负极的最佳候选材料,但是硅材料在锂化/脱锂过程中不可避免的体积变化以及低于石墨的电导率阻碍了其在大规模储能领域的广泛应用。基于此,本研究通过引入高导电性的金属铜和良好力学性能的碳材料设计了
学位
环氧树脂泡沫材料由于其高比强度、低密度、低热导率和耐腐蚀性好等优点在航空航天、轨道交通、新能源汽车等行业受到广泛关注,但传统环氧树脂的耐温性能较低限制了其在极端高温环境下的进一步应用。如何在改善环氧泡沫材料的耐高温性能的同时保持较高的机械强度是目前需要解决的重要问题。本文基于材料结构-性能一体化的设计思想,开展了硼酸改性酚醛环氧树脂(BEPN)与BEPN接枝氧化石墨烯(BGO)的合成制备研究,通过
学位
聚合物稳定液晶(Polymer Stabilized Liquid Crystals,PSLCs)作为一种新型的液晶-聚合物复合材料,兼具液晶的外场响应性及聚合物网络的力学性能。与传统的聚合物分散液晶相比,PSLCs具有驱动电压低、透光率高以及独特的关态透明而开态散射的调控方式,有望作为有效的节能调光器件应用于实际生活。本文通过将手性光开关材料掺杂到PSLCs体系中,将光开关分子的光热响应性与PS
学位
正硅酸乙酯因其优越的渗透性被广泛地研究及应用于文物建筑风化层加固领域。然而作为一种持久有效的文物表层保护材料,正硅酸乙酯的耐久性能仍需进一步优化及提升。本研究分别采用以添加不同质量比例(5%、10%、15%、20%、25%)的有机硅改性剂(正辛基三乙氧基硅烷(OTES)、聚甲基氢硅氧烷(PMHS))对正硅酸乙酯(TEOS)进行改性。结果表明,单独采用两种有机硅改性剂改后的TEOS均可明显提高土体的
学位
金属表面涂覆有机涂层是一种经济高效且广泛使用的防腐蚀方法。由于溶剂型涂料中挥发性有机溶剂带来的环境问题,无溶剂环氧涂料的开发成为防腐蚀涂料的研究热点。明晰涂层的失效机制是涂料开发和应用的基础。因此对无溶剂环氧涂料的失效机制与寿命预测的研究,在涂层的防腐蚀性能优化与维护维修方面具有较为重要的理论指导和工程应用意义。本工作采用电化学交流阻抗谱(EIS)、开路电位(OCP)、附着力、失光率和色差等方法研
学位
炭黑是一种理想的工业填料,着色性高,化学稳定性好,具有极好的补强性,广泛应用于涂料、油墨及橡胶等领域。但由于炭黑粒径小,比表面积大,表面自由能较高的自身特性,粒子间作用力强,极易内聚成团,降低了其在各种应用领域的分散;同时普通炭黑表面基团较少,极性较低,表面相对惰性,当作为补强填料使用时,主要起到物理补强的作用,这也限制其进一步发展。对炭黑进行表面改性是目前的研究方向之一,本论文采用臭氧气相氧化法
学位