嵌套结构弹丸高速撞击扩散特性研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:dingyongguo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着人类航天技术水平的不断提高,航天器上的部件和所应用的材料越来越多样化,与此同时空间碎片的组成与结构也变的越来越复杂化。当航天器发生爆炸解体时,质地较软又具有热塑性的高分子材料,很可能与微小的金属颗粒以及较大的片状金属碎片结合成为一种嵌套结构的空间碎片。这种空间碎片具有较为独特的高速撞击扩散特性,对航天器具有特殊的威胁,因此,本文设计了一种嵌套结构弹丸对该空间碎片进行模拟,通过大量数值仿真来获得其在不同撞击条件下的扩散特性。以碎片层厚度、长径比与芯弹径比等参数来描述嵌套结构弹丸的结构特征,以结构特征参数不同的弹丸对单层铝板进行撞击仿真,分析仿真结果中弹丸的轴向剩余速度、碎片扩散角以及验证板损伤情况,得到嵌套结构特征参数对弹丸撞击扩散特性的影响规律。结果表明,弹丸长径比、芯弹径比会对轴向剩余速度产生影响,弹丸外径、碎片层厚度、长径比和芯弹径比均会对碎片扩散角产生影响。对防护屏层数、板厚分配、间距分配等防护结构参数不同的多层铝板防护结构进行撞击仿真,分析不同防护结构参数配置对嵌套结构弹丸的防护效果及最终弹丸所表现出来的扩散特性的影响规律。结果表明,合理配置防护结构参数可使嵌套结构弹丸在撞击初期实现破碎,并充分横向扩散,提高后续靶板对弹丸碎片的减速和拦截作用,从而降低嵌套结构弹丸对航天器造成的损伤。以平头、锥形头、卵形头等不同形状的弹头结构模拟嵌套结构空间碎片的撞击端不同形状,分别撞击单层靶板和多层铝板防护结构,得到了弹头结构对弹丸本身的扩散特性以及防护结构的防护效果的影响规律。结果表明,与无弹头的嵌套结构弹丸相比,具有不同形状弹头结构的嵌套弹丸击穿靶板后的破碎效应受到不同程度的抑制,从而使其撞击防护结构时的扩散特性受到影响。
其他文献
吸气式高超声速飞行器凭借其高速度、大射程、快机动的特点,在军事和民用领域都具有巨大的潜在价值和战略意义。但是,与传统飞行器相比,吸气式高超声速飞行器强非线性、参数不确定性、强耦合性、快时变等特性都对其控制系统设计带来了巨大的挑战。因此,本文针对高超声速飞行器存在的热点问题进行研究,重点解决:考虑模型具有快时变、不确定参数的问题和大飞行包线条件下的控制问题。主要研究内容包括:首先,得到了吸气式高超声
随着航空发动机性能的不断提升,有线测量所带来的额外负重和测量节点数目限制等问题越来越制约着航空发动机的高性能、高智能化发展。无线测量凭借其多测点数目,无线信息传输等优势,越来越受到飞行器测量领域的关注。然而在现有的飞行器测量领域虽然有着无线测量传感器相关应用的提出,却很少关注到无线测量传感器的具体供能问题,而如果不能完全解决无线测量传感器的自供能问题,就无法做到无线测量系统真正的无缆化。因此,本文
本文针对一类具有HollingⅣ功能性反应函数的捕食系统,应用微分方程稳定性和定性理论、重合度理论,证明了系统正平衡点全局稳定性,极限环的存在唯一性和周期解的存在性。主要内容如下:第一部分,当食饵种群密度制约为一般函数时,分别研究了捕食者有密度制约和无密度制约的HollingⅣ型的捕食系统。利用根存在性定理,得到了正平衡点的存在条件。通过定性分析方法,给出平衡点的局部稳定性。运用Dulac函数法和
随着航天技术的发展,空间机械臂在载荷抓取投放、在轨装配、在轨维护等方面的应用越来越广泛,对机械臂的绝对定位精度要求也越来越高。空间机械臂在发射过程中的环境变化、震动冲击,在轨长时间服务后杆件形变、关节间紧密性改变和关节在轨更换等因素均会造成定位精度下降。进行空间机械臂运动学参数的在轨标定,提高其末端定位精度,对机械臂精确完成太空任务具有重要意义。本文以七自由度空间机械臂为研究对象,使用MDH法建立
尾座式飞机具备固定翼飞机和旋翼机的优点,具有垂直起降、飞行速度快、续航时间长等特点,应用前景广阔。然而,尾座式飞机存在六自由度动力学强耦合、欧拉角奇异等问题,导致控制器设计较为困难。本文以尾座式无人机为研究对象,首先根据尾座式无人机构型发展设计了尾座式无人机的构型并测量相关参数。分析了尾座式无人机的飞行原理,建立了数学模型。最后设计了尾座式无人机飞行控制方法,并通过飞行验证可飞行控制器。主要工作包
随着人类对于太空的探索逐渐深入,各类航天器相关的技术也在逐步发展,对于航天器的要求也在不断提高,随之而来的便是对于航天器太阳翼技术要求的提升。太阳翼可以在航天器进行空间工作时为其提供能量,其对航天器空间任务的成败有着较大的影响。为了使得太阳翼在空间工作时能够正常展开,应提前对其进行地面展开试验,而展开架导轨的相关参数对于太阳翼地面展开试验极为重要。本课题所研制的太阳翼地面展开试验导轨参数测量系统可
随着《“十四五”国家科技创新规划》的发布,深空探测领域成为我国实现航天强国战略的重要组成部分,也是标志性领域之一。我国未来小天体探测器将采用圆形柔性太阳翼,该太阳翼在探测器发射阶段处于收拢压紧状态,探测器入轨后,太阳翼即按要求顺次解锁压紧释放装置,只有在太阳帆板正常的展开和锁定后,航天才能正常工作,所以太阳帆板的正常展开与否是重要指标之一。为此,本文针对圆形薄膜太阳翼的地面零重力展开试验系统的等效
能够水平起降的组合动力空天飞行器相比于传统火箭发射窗口增大,可重复使用的特性也降低了发射成本,具备战时执行紧急入轨的能力;同时,组合动力空天飞行器还可以作为高超声速飞机使用,能够对于高威胁区域进行抵近快速侦察,还可以携带武器执行快速打击任务。因此,组合动力空天飞行器近年来越来越受到世界各国的重视。爬升段是组合动力空天飞行器能否成功执行后续任务的关键,轨迹设计与优化是开展后续跟踪控制的基础。同时,由
为了满足人类对于未来空间探索的需求,适应愈加复杂、繁重的空间探测和运输任务,世界各大国正在大力发展运载火箭的相关技术。由于现代空间运输任务对运载火箭工具提出了更高的要求,故相关技术的研究已成为航空航天的一个重要研究内容。运载火箭按照发动机的类型可分为固体或者液体火箭,固体火箭凭自身优势成为运载火箭的一个重要分支,为了使固体运载火箭的制导系统满足更加复杂的发射任务,拥有更高的入轨精度,需要对固体运载
变质心控制技术通过改变安装于飞行器内部质量块的位置实现系统质心位置的改变,使作用在飞行器上的合外力相对于飞行器系统质心的位置矢量发生变化,从而改变合外力相对于飞行器质心的力矩实现姿态机动。变质心控制技术在上个世纪便被提出,并得到了研究人员的充分理论研究,在高速再入飞行器滚转控制方面具有广阔的应用前景。国内研究起步较晚,大都停留在建模和仿真阶段,因此开发出验证样机是变质心技术工程应用的基础。四旋翼成