【摘 要】
:
人脸识别技术已广泛应用于各个领域。与传统手工提取人脸特征方式相比,基于深度学习的人脸识别方法能够通过多层级联的卷积神经网络提取更具表达能力的人脸特征,具备更高效、更准确的人脸识别能力。基于深度学习的人脸识别过程主要包括人脸检测与人脸特征识别两个阶段。人脸检测用于在图像中定位人脸,以从中提取人脸信息;人脸识别比对人脸特征提取的结果,判断人脸所属个体。在众多的图像检测方法和图像识别方法中,如何对模型进
论文部分内容阅读
人脸识别技术已广泛应用于各个领域。与传统手工提取人脸特征方式相比,基于深度学习的人脸识别方法能够通过多层级联的卷积神经网络提取更具表达能力的人脸特征,具备更高效、更准确的人脸识别能力。基于深度学习的人脸识别过程主要包括人脸检测与人脸特征识别两个阶段。人脸检测用于在图像中定位人脸,以从中提取人脸信息;人脸识别比对人脸特征提取的结果,判断人脸所属个体。在众多的图像检测方法和图像识别方法中,如何对模型进行分类选择,以适应多场景下的人脸识别,是人脸识别技术所面临的重要问题之一。为此,提出一种通过前置导向分类网络确定最终人脸识别模型的方法,根据图像信息选择适用的模型。该前置导向分类网络以残差网络为基础,在原有结构上,将第一层网络中的大尺寸卷积核变为多个小尺寸卷积核以减少参数,并改进激活函数,以提升模型拟合能力。此外,将通道注意力机制引入前置导向分类网络,以提高网络分类的准确性。在人脸检测方面,针对当前过滤算法得到的检测框精度不足问题,提出一种基于图像变换策略及加权检测框融合技术的检测框生成方法。此方法在单个人脸检测模型基础上,通过改变图像的局部亮度和呈现角度,获得多个人脸检测框,并采用加权检测框融合技术生成最终的检测框。综合上述两种改进方案,提出了一种基于前置导向分类网络和加权检测框融合的人脸识别方法,并根据此方法设计实现了一套门禁系统。在公开数据集上对上述改进方案进行实验,实验结果表明,与不使用前置导向分类网络的人脸识别方法相比,使用前置导向分类网络在识别准确率方面具有2%左右的提升,所提出的检测框生成方法能够提升0.4%左右的人脸识别结果准确率,最终整体人脸识别方法识别准确率达到98.94%,验证研究具有理论和应用价值。
其他文献
新型冠状病毒肺炎是一种严重危害世界人民健康甚至生命的疾病。对新冠的研究有多个方面,其中,患者在治疗过程中病情变化规律的研究,是一个重要的问题。根据患者治疗中的指标表现,可将其分为普通、重症、死亡3种程度,病情的变化规律指的是患病程度如何变化。根据临床实际治疗样本,总结了四种新冠患者病情变化规律:普通仍然普通、普通变成重症、重症变成普通、重症变成死亡。现阶段统计了上述四类患者的临床数据,包括病人肺部
随着我国医疗科技的飞速发展,人们对医疗服务的需求和依赖也呈爆炸式增长,在这个过程中,不可避免地滋生出了许多治疗不规范、费用不合理的情况。为了能够提高医疗质量、控制医疗费用,临床路径与疾病诊断相关分组(Diagnosis Related Groups,DRG)作为一种有效的技术手段开始被广泛使用。但是其依然存在着数据容易被篡改、医疗异常无法及时被发现以及出现医疗事故后无法查询出详细信息和定责等问题。
近年来,社群搜索已经广泛用于好友推荐、事件组织与活动举办和基于地理与社交的数据分析等基于位置的应用场景中,但是社群中包含大量的用户信息,如果对社群搜索进行不当的利用,用户的社交好友关系、签到行为喜好甚至其他隐私信息都会被泄露,采取措施保护用户的原始数据,消除社群搜索应用存在的隐私泄露隐患,对保证用户的安全具有重要意义。分析了仅对用户的社交关系或签到数据采取隐私保护后,社群搜索仍然存在的隐私泄露问题
为了准确刻画网络论坛投资者情绪并探讨其与我国股市的收益关系,本文将根据东方财富网股吧数据,基于BERT模型构建投资者情绪指数,并借助向量自回归模型考察投资者情绪与股市收益率和成交量之间的动态影响。实证结果表明:相较于6种经典的情感分类模型,本文构建的BERT模型在各项评估指标上的表现更佳;股市收益率对投资者情绪存在正向影响,投资者情绪与成交量存在双向影响。
在计算机视觉领域,三维人脸重建是一个非常热门的研究方向。三维人脸重建方法的目标是根据已有的二维人脸图像,构建出真实且高精度的三维人脸。由三维人脸重建算法恢复的三维人脸可以应用于影视、动画和医学等领域。三维人脸重建技术可作为辅助技术用于人脸编辑和人脸识别等研究方向。现有的基于深度学习的三维人脸重建方法无法生成真实的人脸纹理和精确的人脸形状,对于多样性原始图像重建人脸的鲁棒性不够好。为了生成更加真实且
随着深度学习技术的不断发展及相关产业需求的提升,基于图像的三维物体重建技术受到越来越多的关注。目前,主流三维重建多以深度神经网络为技术支撑,通常包含编码器和解码器两个核心模块。然而,由于深度学习技术在三维重建方面的研究起步较晚,重建出的三维物体在局部细节上仍有待完善。鉴于此,以高质量三维重建为核心需求,围绕深度神经网络中的编码器和解码器设计,开展了以下研究:首先,设计了基于多分辨率编码的三维点云重
随着互联网电商平台的兴起,商品推荐系统发展迅速。研究表明,基于用户与商品交互序列的推荐算法能够感知用户的长期偏好,有助于提升推荐效果。通过对真实数据集分析,发现某些情况下交易数据具有稀疏和短交互性的特征,在二手交易平台中尤为明显,此类问题降低了序列建模推荐方法的有效性。与此同时,当推荐系统进一步面对用户冷启动问题时,有必要综合考虑算法的适应性和数据的稀疏性问题。基于上述分析,对面向稀疏数据的序列建
知识抽取技术能够帮助人们从海量内容中自动抽取结构化知识,因此开展知识抽取技术的研究至关重要。知识抽取具有三个核心的子任务:实体抽取、属性关系抽取和事件抽取,目前各项子任务的研究方法均取得快速发展,但仍存在以下问题:1.算法与领域知识结合不紧密,对领域知识利用不充分。2.嵌套实体识别与实体多分类同时实现较为困难。因此,基于背景知识嵌入,改进了嵌套命名实体识别算法,并设计和实现了知识抽取系统。基于嵌套
临床上医生在对脑颈部动脉血管疾病进行诊断时,通常需要进行CT血管造影(CTA),然后经过手工对动脉供血分区进行切割得到一系列不同动脉分支的多角度摄片重构图像。但这种方法对医生的专业水平要求高并且工作量大速度慢,亟需一种自动生成不同脑颈动脉多角度摄片重构图像的算法。提出一种基于关键点定位的自动脑颈动脉多角度摄片重构算法。首先,提出12个在自动脑颈动脉供血分区中起到关键作用的关键点,并在医院采集的CT